
ar
X

iv
:2

50
5.

23
59

4v
1

 [
st

at
.M

L
]

 2
9

M
ay

 2
02

5
1

Multilook Coherent Imaging: Theoretical Guarantees
and Algorithms

Xi Chen†, Soham Jana†, Christopher A. Metzler, Arian Maleki, Shirin Jalali

Abstract

Multilook coherent imaging is a widely used technique in applications such as digital holography, ultrasound
imaging, and synthetic aperture radar. A central challenge in these systems is the presence of multiplicative noise,
commonly known as speckle, which degrades image quality. Despite the widespread use of coherent imaging
systems, their theoretical foundations remain relatively underexplored. In this paper, we study both the theoretical and
algorithmic aspects of likelihood-based approaches for multilook coherent imaging, providing a rigorous framework
for analysis and method development. Our theoretical contributions include establishing the first theoretical upper
bound on the Mean Squared Error (MSE) of the maximum likelihood estimator under the deep image prior hypothesis.
Our results capture the dependence of MSE on the number of parameters in the deep image prior, the number
of looks, the signal dimension, and the number of measurements per look. On the algorithmic side, we employ
projected gradient descent (PGD) as an efficient method for computing the maximum likelihood solution.

Furthermore, we introduce two key ideas to enhance the practical performance of PGD. First, we incorporate the
Newton-Schulz algorithm to compute matrix inverses within the PGD iterations, significantly reducing computational
complexity. Second, we develop a bagging strategy to mitigate projection errors introduced during PGD updates. We
demonstrate that combining these techniques with PGD yields state-of-the-art performance. Our code is available at:
https://github.com/Computational-Imaging-RU/Bagged-DIP-Speckle.

Keywords: Inverse Problems, Speckle Noise, Deep Image Prior

I. INTRODUCTION

One of the most fundamental and challenging issues faced by many coherent imaging systems is the
presence of speckle noise. An imaging system with “fully-developed” speckle noise can be modeled as

y = AXow + z. (1)

Here, Xo = diag(xo), where xo ∈ Cn denotes the complex-valued signal of interest. w ∈ Cn represents
speckle (or multiplicative) noise, where w1, . . . , wn are independent and identically distributed (iid)
CN (0, σ2

wIn), and finally z ∈ Cm denotes the additive noise, often caused by the sensors, is modeled as
iid CN (0, σ2

z). In this paper, we explore the scenario where m ≤ n, allowing imaging systems to capture
higher resolution images than constrained by the number of sensors. Considering m < n for simpler
imaging systems (with no speckle noise) has led to the development of the fields of compressed sensing
and compressive phase retrieval [1]–[6].

As is clear from (1), the multiplicative nature of the speckle noise poses a challenge in extracting
accurate information from measurements, especially when the measurement matrix A is ill-conditioned. To
alleviate this issue, many practical systems employ a technique known as multilook or multishot [7], [8].
Instead of taking a single measurement of the image, multilook systems capture multiple measurements,
aiming for each group of measurements to have independent speckle and additive noise. In an L look
system, the measurements captured at look ℓ, ℓ = 1, . . . , L, can be represented as

yℓ = AXowℓ + zℓ,

†Equal contributions. X. C. and S. Jalali are with the Department of Electrical and Computer Engineering, Rutgers University, New
Brunswick, NJ, USA. S. Jana is with the Department of Applied and Computational Mathematics and Statistics, University of Notre Dame,
Notre Dame, IN, USA, (Correspondence to: soham.jana@nd.edu). C. A. M. is with the Department of Computer Science, University of
Maryland, College Park, MD, USA. A. M. is with the Department of Statistics, Columbia University, NY, USA. An earlier version of this
paper was presented in part at the Proceedings of the 41st International Conference on Machine Learning, Vienna, Austria. PMLR 235, 2024.

https://github.com/Computational-Imaging-RU/Bagged-DIP-Speckle
soham.jana@nd.edu
https://arxiv.org/abs/2505.23594v1

2

where, w1, . . . ,wL ∈ Cn and z1, . . . ,zL ∈ Cm denote the independent speckle noise and additive noise
vectors, respectively. In this model, we have assumed that the measurement kernel A remains constant
across the looks. This assumption holds true in multilooking for several imaging systems, such as when
the sensors’ locations change slightly for different looks.

Since fully-developed noises are complex-valued Gaussian and have uniform phases, the phase of xo
cannot be recovered. Hence, the goal of a multilook system is to obtain a precise estimate of |xo| based
on the L observations {y1, . . . ,yL}, given the measurement matrix A. (Here, | · | denotes the element-wise
absolute value operation.) Therefore, since the phase of xo is not recoverable, in the rest of the paper, we
assume that xo is real-valued.

A standard approach for estimating xo is to minimize the negative log-likelihood function subject to the
signal structure constraint. More precisely, in a constrained-likelihood-based approach, one aims to solve
the following optimization problem:

x̂ = argmin
x∈C

fL(x), (2)

where C represents the set encompassing all conceivable images and fL(x) is defined as:

fL(x) = log det(B(x)) +
1

L

L∑
ℓ=1

ỹ⊤ℓ (B(x))−1ỹℓ, (3)

where

B(x) =

[
σ2
zIn + σ2

wℜ(U(x)) −σ2
wℑ(U(x))

σ2
wℑ(U(x)) σ2

zIn + σ2
wℜ(U(x))

]
,

and ỹ⊤ℓ =
[
ℜ(y⊤ℓ) ℑ(y⊤ℓ)

]
, with X = diag(x) and

U(x) = AX2Ā⊤.

Here, ℜ(·) and ℑ(·) denote element-wise real and imaginary parts, respectively. (Appendix A presents the
derivation of the log likelihood function and its gradient.)

It is important to note that the set C in (2) is not known explicitly in practice. Hence, in this paper we
work with the following hypothesis that was put forward in [9], [10].
• Deep image prior (DIP) hypothesis [9], [10]: Natural images can be embedded within the range of

untrained neural networks that have substantially fewer parameters than the total number of pixels,
and use iid noises as inputs.

Inspired by this hypothesis, we define C as the range of a deep image prior. More specifically, we
assume that for every x ∈ C, there exists θ ∈ Rk such that x = gθ(u), where u is generated iid N (0, 1),
and θ ∈ Rk denotes the parameters of the DIP neural network. There are two main challenges that we
address:
• Theoretical challenge: Assuming that we can solve the optimization problem (2) under the DIP

hypothesis, the following question arises: Can we theoretically characterize the corresponding
reconstruction quality? Moreover, what is the relationship between the reconstruction error and
key parameters such as k (the number of parameters of the DIP neural network), m, n and L?
Specifically, in the scenario where the scene is static, and we can acquire as many looks as necessary,
what is the achievable level of accuracy?

• Practical challenge: Given the challenging nature of the likelihood and the DIP hypothesis, can we
design a computationally-efficient algorithm for solving (2) under the DIP hypothesis?

Here is a summary of our contributions:
On the theoretical front, we establish the first theoretical result on the performance of multilook coherent

imaging systems. Compared to the earlier version of this work presented at the International Conference
on Machine Learning, the theoretical results in the current paper are significantly sharper. Our findings
unveil intriguing characteristics of such imaging systems. A special case of our result, corresponding to

3

L = 1, is directly comparable to the findings in [11]. As we will show, in this setting, our bounds on the
mean squared error are significantly tighter than those presented in [11].

On the practical side, we start with vanilla projected gradient descent (PGD) [12], which faces two
challenges diminishing its effectiveness on this problem:

Challenge 1: As will be described in Section IV-B, in the PGD, the signal to be projected on the
range of gθ(u) is burried in “noise”. Hence, DIPs with large number of parameters will overfit to the
noise and will not allow the PGD algorithm to obtain a reliable estimate [10], [13]. On the other
hand, the low accuracy of simpler DIPs becomes a bottleneck as the algorithm progresses through
iterations, limiting the overall performance. To alleviate this issue, we propose Bagged-DIP. This is
a simple idea with roots in classical literature of ensemble methods [14]. Bagged-DIP idea enables
us to use complex DIPs at every iteration and yet obtain accurate results.
Challenge 2: As will be clarified in Section IV-A, PGD requires the inversion of large matrices at
every iteration, which is a computationally challenging problem. We alleviate this issue by using the
Newton-Schulz algorithm [15], and empirically demonstrating that only one step of this algorithm is
sufficient for the PGD algorithm. This significantly reduces the computational complexity of each
iteration of PGD.

II. RELATED WORK

Eliminating speckle noise has been extensively explored in the literature [16]–[18]. Current technology
relies on gathering enough measurements to ensure the invertibility of matrix A and subsequently inverting
A to represent the measurements in the following form: yℓ = Xwℓ + zℓ. However, as matrix A deviates
from the identity, the elements of the vector z become dependent. In practice, these dependencies are often
overlooked, simplifying the likelihood. This simplification allows researchers to leverage various denoising
methods, spanning from classical low-pass filtering to application of convolutional neural networks [19]
and transformers [20]. A series of papers have considered the impact of the measurement kernel in the
algorithms. By using single-shot digital holography, the authors in [21], [22] develop heuristic method to
obtain maximum a posteriori estimate of the real-valued speckle-free object reflectance. They later extend
this method to handle multi-shot measurements and incorporate more accurate image priors [8], [23], [24].
While these methods can work with non-identity A’s, they still require A to be well-conditioned.

Our paper is different from the existing literature, mainly because we study scenarios where the matrix
A is under-sampled (m < n). In a few recent papers, researchers have explored similar problems [11],
[25]. The paper [25] aligns closely in scope and approach with our work. The authors addressed a similar
problem and advocated for the use of DIP-based PGD. Addressing the concerns highlighted in the last
section (further elucidated in Section V-B), our Bagged-DIP-based PGD employing the Newton-Schulz
algorithm significantly outperforms [25] in both reconstruction quality and computational complexity. We
will provide more information in our simulation studies. Furthermore, we should emphasize that [25] did
not offer any theoretical results regarding the performance of DIP-based MLE.

The authors in [11] theoretically demonstrated the feasibility of accurate recovery of xo even for
m < n measurements. While our theoretical results build upon the contributions of [11], our paper extends
significantly in three key aspects: (1) We address the multilook problem and investigate the influence of
the number of looks on our bounds. To ensure sharp bounds, especially when L is large, we derive sharper
bounds than those presented in [11]. These requires a different proof technique as detailed in our proof.
(2) In contrast to the use of compression codes’ codewords for the set C in [11], we leverage the range of
a deep image prior, inspired by recent advances in machine learning. Despite presenting new challenges
in proving our results, this approach enables us to simplify and establish the relationship between Mean
Squared Error (MSE) and problem specification parameters such as n,m, k, L. (3) On the empirical side,
the experiments in [11] were restricted to a few toy examples due to their limiting assumptions. In contrast,
by leveraging Deep Image Priors (DIPs) together with the Newton–Schulz method and bagging, we are
able to evaluate our algorithms on natural images and achieve state-of-the-art results.

4

Given DIP’s flexibility, it has been employed for various imaging and (blind) inverse problems, e.g.,
compressed sensing, phase retrieval etc. [26]–[31]. To boost the performance of DIP in these applications,
researchers have explored several ideas, including, introducing explicit regularization [32], incorporating
prior on network weights by introducing a learned regularization method into the DIP structure [33],
combining with pre-trained denoisers in a Plug-and-Play fashion [34], [35], and exploring the effect of
changing DIP structures and input noise settings to speed up DIP training [36].

Lastly, it’s important to note our work can be situated within the realm of compressed sensing (CS) [1],
[2], [37]–[41], where the objective is to derive high-resolution images from lower-resolution measurements.
However, notably, the specific challenge of recovery in the presence of speckle noise has not been explored
in the literatures before, except in [11] that we discussed before.

III. MAIN THEORETICAL RESULT

A. Assumptions and their justifications
As we described in the last section, in our theoretical work, we consider the cases in which m < n. m

can even be much smaller than n. Furthermore, for notational simplicity, in our theoretical work only, we
assume that the measurements and noises are real-valued.1 Hence, we work with the following likelihood
function:

x̂ = argmin
x∈C

f(x), (4)

where

f(x) = log det
(
σ2
zIm + σ2

wAX
2A⊤

)
+

1

L

L∑
ℓ=1

y⊤ℓ
(
σ2
zIm + σ2

wAX
2A⊤

)−1
yℓ. (5)

Note that we omit subscript L from the likelihood as a way to distinguish between the negative loglikelihood
of real-valued measurements from the complex-valued ones. The following theorem is the main theoretical
result of the paper. Consider the case of no additve noise, i.e. σz = 0, and that for all i, we have
0 < xmin ≤ xo,i ≤ xmax.

As we discussed before, our theoretical results are based on the “Deep image prior” hypothesis, mentioned
in the introduction. However, the following aspects of the hypothesis are not mathematically rigorous and
should be carefully discussed:

1) What are the mathematical properties of gθ(u) as a function of θ ∈ Rk?
2) If θ belongs to a set Θ, what assumptions should we have about Θ based on the assumptions we

have for x, i.e., the assumption 0 < xmin ≤ xo,i ≤ xmax?
Clearly, the answers to the two questions raised above are closely related, and various reasonable choices

can be made in addressing them. In this paper, we adopt a natural and relatively mild assumption that
has been commonly used for gθ(u) as a function of θ. Specifically, we assume that gθ(u) is a Lipschitz
function with respect to θ ∈ Θ, with Lipschitz constant 1. Under this assumption, we must carefully
consider the constraints we impose on the set Θ.

Assume that g0(u) = 0, which holds for all networks typically used in the Deep Image Prior (DIP)
framework. Suppose Θ is a compact set, and define its radius as

rΘ = sup
θ∈Θ

∥θ∥2.

Since gθ(u) is a Lipschitz function, we can conclude that

∥gθ(u)∥2 ≤ ∥θ∥2 ≤ rΘ.

1For the complex-valued problem, since the phases of the elements of xo are not recoverable, we can assume that xo is real-valued. Even
though in this case, the problem is similar to the problem we study in this paper, given that we have to deal with real and imaginary parts of
the measurement matrices and noises, they are notationally more involved.

5

On the other hand we know that since for x = gθ(u), we have 0 < xmin ≤ xo,i ≤ xmax, then xmin

√
n ≤

∥x∥2 = ∥gθ(u)∥2 ≤ xmax

√
n. This gives a lower bound for rΘ. Hence, we will assume that rΘ = xmax

√
n.

In summary, defining
Bk (0, r) = {θ ∈ Rk | ∥θ∥2 ≤ r}.

we assume that

Θ = Bk

(
0, xmax

√
n

k

)
.

Note that based on the DIP hypothesis we will have

C ⊂ {x | x = gθ(u),θ ∈ Θ}.

As a final remark, we should clarify that under our assumptions C cannot be equal to {x | x = gθ(u),θ ∈ Θ}.
This is mainly because 0 /∈ C, while

0 ∈ {x | x = gθ(u),θ ∈ Θ}.

B. Main theorem and its implications
We are now ready to state our main theorem. Our main theorem captures the interplay between the

accuracy of our maximum likelihood-based recovery, the number of measurements m, the number of looks
L, the ambient dimension of the signals to be recovered n, and the number of the parameters in the DIP
model.

Theorem III.1. Let the elements of the measurement matrix Aij be iid N (0, 1). Suppose that m < n and
that the function gθ(u), as a function of θ ∈ Bk

(
0, xmax

√
n
k

)
, is Lipschitz with Lipschitz constant 1. Then

1

n
∥x̂− xo∥22 = C1

(
n

m2
· k log n

L
+

√
k log n

m

)
, (6)

with probability 1− C2

(
e−

m
2 + e−

Ln
8 + e−C3k logn + ek logn−

n
2

)
for some constants C1, C2, C3 > 0.

Before discussing the proof sketch and the technical novelties of our proof strategy, we explain some of
the conclusions that can be drawn from this theorem, provide some intuition, and compare with some of
the existing results. Our first remark compares our result with the only existing theoretical work on this
problem:
Remark III.2. A much weaker version of Theorem III.1 appeared in the shorter version of this paper
published at the International Conference on Machine Learning. Specifically, the leading term in the
upper bound was n

m
·
√
k logn√
Lm

, which is substantially looser than the bound obtained here, particularly since
k log n ≪ Lm. The sharper result presented in this paper is derived using a different proof strategy.

The only existing results on the recovery performance of coherent imaging systems are those presented
in [11], [42]. The authors of [42] focus exclusively on the despeckling problem and do not address the
central challenge considered in our work—namely, the existence of the measurement matrix A and the
fact that m < n. As a result, their results are not directly comparable to ours. However, the results of [11]
are more closely related to our work. But there are a few major differences between the theoretical result
presented in [11] and Theorem III.1:

1) The theoretical results in [11] rely on the existence of a compression algorithm tailored to the set of
images, whereas our work is based on the Deep Image Prior (DIP) hypothesis. The DIP hypothesis
is more flexible and, as demonstrated in the simulation section, allows for efficient solutions to the
associated optimization problem.

2) While there are some major differences, we interpret the α-dimension of the sequence of compression
algorithms as the effective number of parameters k so that we can provide a more accurate comparison

6

between our result and the one presented in [11], [43]. The authors in the above work consider the
setup where m,n are of the same orders, L = 1, and their upper bound [43, Corollary 1] takes the form√

k logn
m

. Comparing this with our bound in the special case L = 1, we observe that when k logn
m

≪ 1,
our bounds are significantly sharper than those presented in [11]. In fact, it is straightforward to see
that since n > m and n is proportional to m, our upper bound in Theorem III.1 simplifies to k logn

m
.

One source of looseness in the proof of [11] arises from an early step that involves working with
the expected log-likelihood. To overcome this issue, we develop a proof strategy that entirely avoids
relying on the expected log-likelihood.

3) This paper also establishes the dependence of the error on the number of looks.
Now, we provide more information on the upper bound we have obtained in Theorem III.1. As is clear

in (6), there are two terms in the MSE. One that does not change with L and the other term that decreases
with L. To understand these two terms, we provide further explanation in the following remarks.
Remark III.3. As the number of parameters of DIP, k, increases (while keeping m,n, and L fixed), both
error terms in the upper bound of MSE grow. This aligns with intuition, as increasing the number of
parameters in gθ(u) allows the DIP model to generate more intricate images. Consequently, distinguishing
between these diverse alternatives based on the noisy measurements becomes more challenging.
Remark III.4. The main interesting feature of the first term in the MSE, i.e., nk logn

Lm2 , is the fact that it grows
rapidly as a function of n. In imaging systems with only additive noise, the growth is often logarithmic in
n [44], contrasting with polynomial growth observed here. This can be attributed to the fact that as we
increase n, the number of speckle noise elements present in our measurements also increases. Hence, it is
reasonable to expect the error term to grow faster in n compared with additive noise models. However,
the exact rate at which the error increases is yet unclear. Nonetheless, we believe the dependency on L for
the term nk logn

Lm2 is sharp as it aligns with the notion of parametric error rate 1
L

for an estimation problem
with L samples.
Remark III.5. As L → ∞, the first term in the upper bound of MSE converges to zero, and the dominant
term becomes

√
k log n/m. Note that since we are considering a fixed matrix A across the looks, even

when L goes to infinity, we should not expect to be able to recover xo independent of the value of m.
One heuristic way to see this is to calculate

1

L

L∑
ℓ=1

yℓy
⊤
ℓ = AXo

1

L

L∑
ℓ=1

wℓw
⊤
ℓ XoA

⊤. (7)

If we heuristically apply the weak law of large numbers and approximate 1
L

∑
ℓwℓw

⊤
ℓ with I , we get

1

L

L∑
ℓ=1

yℓy
⊤
ℓ ≈ AX2

oA
⊤.

Under these approximations, the matirx 1
L

∑
ℓ yℓy

⊤
ℓ provides m(m + 1)/2 (due to symmetry) linear

measurements of X2
o . Hence, inspired by classic results in compressed sensing [45], intuitively, we expect

the accurate recovery of x2
o to be possible when m2 ≫ k log n. The first error term in MSE is negligible

when m2 ≫ k log n, which is consistent with our conclusion based on the limit of 1
L

∑
ℓ yℓy

⊤
ℓ .

We next provide the key steps of the proof to highlight the technical novelties of our proof and also to
enable the readers to navigate through the detailed proof more easily. We follow it up with the details to
end this section.

C. Key steps in the proof of Theorem III.1
We first prove Denote the objective function f as

f(x) = f(Σ(x)) = − log detΣ +
1

Lσ2
w

L∑
ℓ=1

Tr(Σyℓy
⊤
ℓ), (8)

7

with Σ = Σ(x) = (AX2A⊤)−1 and X = diag(x). Note that, f can be written as

f(Σ) = − log detΣ +
1

Lσ2
w

L∑
ℓ=1

Tr(ΣAXowℓw
⊤
ℓ XoA

⊤).

Let x̂ denote the minimizer of the objective f , i.e.,

f(Σ̂) ≤ f(Σo), (9)

where Σ̂ = Σ(x̂) and Σo = Σ(xo). For a given Σ, let f̄(Σ) denote the expected value of f(Σ) with respect
to w1, . . . ,wℓ. It is straightforward to show

f̄(Σ) = − log detΣ + Tr(ΣAX2
oA
⊤). (10)

Expanding the terms in (9) we have

1

Lσ2
w

L∑
ℓ=1

y⊤ℓ Σ̂yℓ − log det(Σ̂) ≤ 1

Lσ2
w

L∑
ℓ=1

y⊤ℓ Σoyℓ − log det(Σo). (11)

Define

∆Σ = Σ̂− Σo. (12)

Using the above definition and (10), we reorganize the terms in (11) to obtain

f̄(Σ̂)− f̄(Σo) ≤ −

[
1

Lσ2
w

L∑
ℓ=1

y⊤ℓ ∆Σyℓ − Tr(∆ΣΣ−1o)

]
. (13)

The rest of the proof can be summarized in the following steps:
1) We establish a lower bound for f̄(Σ̂)− f̄(Σo) in terms of Tr(Σ−1o ∆ΣΣ−1o ∆Σ).
2) We obtain an upper bound for −

[
1

Lσ2
w

∑L
ℓ=1 y

⊤
ℓ ∆Σyℓ − Tr(∆ΣΣ−1o)

]
in terms of Tr(Σ−1o ∆ΣΣ−1o ∆Σ).

3) We use the two bounds derived in Steps 1 and 2 to obtain an upper bound for Tr(Σ−1o ∆ΣΣ−1o ∆Σ).
4) We use concentration arguments to obtain a high probability lower bound (in terms of the randomness

in A) for Tr(Σ−1o ∆ΣΣ−1o ∆Σ) in terms of ∥x̂− xo∥22. By combining this with Step 3, we establish
the proof. We provide more details for each of the above four steps below.

D. Details of the proof of Theorem III.1

1) Lower bounding f̄(Σ̂)− f̄(Σo):
In Lemma VI.6 that will be presented in Section VI we show that

f̄(Σ̂)− f̄(Σo) ≥
Tr(Σ−1o ∆ΣΣ−1o ∆Σ)

2(1 + λmax)2
, (14)

where λmax denote the maximum eigenvalue of Σ
− 1

2
o ∆ΣΣ

− 1
2

o . To make this bound useful we have to
find a data-independent upper bound for λmax. Note that

λmax = max
u∈Rn

u⊤Σ
− 1

2
o ∆ΣΣ

− 1
2

o u

∥u∥22
= max

u∈Rn

∣∣∣u⊤ (Σ− 1
2

o Σ̂Σ
− 1

2
o − I

)
u
∣∣∣

∥u∥22
≤
∣∣∣λmax(Σ

−1
o)λmax(Σ̂)

∣∣∣+ 1. (15)

But Σ̂ = (AX̂2A⊤)−1 and X̂ = diag(x̂). Therefore,

λmax(Σ̂) = (λmin(AX̂
2A⊤))−1 ≤ (λmin(AA

⊤)x2
min)

−1,

8

and

λmax

(
Σ−1o

)
= λmax(AX

2
oA
⊤) ≤ λmax(AA

⊤)x2
max.

To make the upper bound indepednet of the choice of matrix A, consider the event

E4 = {
√
n− 2

√
m ≤ σmin(A) ≤ σmax(A) ≤

√
n+ 2

√
m}. (16)

In Lemma VI.2, presented in Section VI, we show tha P[E4] ≥ 1− 2e−
m
2 . Hence, conditioned on E4

we continue (15) to get

λmax ≤
λmax(AA

⊤)x2
max

λmin(AA⊤)x2
min

+ 1 ≤ (
√
n+ 2

√
m)

2
x2
max

(
√
n− 2

√
m)

2
x2
min

+ 1 ≤ c̃ (17)

for some constant c̃ > 0 whenever m
n
≤ 1

5
. Combining (13), (14), and (17), we have

Tr(Σ−1o ∆ΣΣ−1o ∆Σ)

2(1 + c̃)2
≤ −

[
1

Lσ2
w

L∑
ℓ=1

y⊤ℓ ∆Σyℓ − Tr(∆ΣΣ−1o)

]
. (18)

2) Upper bounding −
[

1
Lσ2

w

∑L
ℓ=1 y

⊤
ℓ ∆Σyℓ − Tr(∆ΣΣ−1o)

]
: Note that if we assume that ∆Σ is inde-

pendent of yℓ, then we have E(y⊤ℓ ∆Σyℓ) = Tr(∆ΣΣ−1o), and we could use standard concentration
results to bound the difference. However, the main issue is that ∆Σ depends on y1, . . . ,yL. To
resolve this issue, we use a δ-net argument, as will be clarified below. Consider a δ-net of the set
Bk(0, xmax

√
n
k
). We call the mapping of the δ-net under g, Cδ. The choice of δ will be discussed

later. Define x̃ as the closest vector in Cδ to x̂, i.e.,

x̃ = argmin
x∈Cδ

∥x̂− xo∥.

For x̃ ∈ Cδ define
X̃ = diag(x̃), Σ̃ = (AX̃2A⊤)−1, ∆Σ̃ = Σ̃− Σo.

Then, Lemma VI.8 proves that there is a constant c > 0 such that for every x̃ ∈ Cδ

P

[∣∣∣∣∣ 1

Lσ2
w

L∑
ℓ=1

y⊤ℓ ∆Σ̃yℓ − Tr(∆Σ̃Σ−1o)

∣∣∣∣∣ > t

]

≤ 2 exp

(
−c ·min

{
L2t2

Tr(Σ−1o ∆Σ̃Σ−1o ∆Σ̃)
,

Lt · x4
minλ

2
min(AA

⊤)

x2
max(σmax(A))2λmax(AA⊤)∥x2

o − x̃2∥∞

})
. (19)

Conditioned on the event E4 in (16) we note whenever m ≤ n, we have

σmax ≤
√
n+

√
m

λmin(AA
⊤) = σmin(AA

⊤) ≥ (σmin(A))
2 ≥ (

√
n−

√
m)2

λmax(AA
⊤) = σmax(AA

⊤) ≤ (σmax(A))
2 ≤ (

√
n+

√
m)2

∥x2
o − x̃2∥∞ ≤ x2

max.

The above implies for n ≥ 2m, there is a constant c > 0 for which

x4
minλ

2
min(AA

⊤)

x2
max(σmax(A))2λmax(AA⊤)∥x2

o − x̃2∥∞
≥ x4

min(
√
n−

√
m)4

x4
max(

√
n+

√
m)4

≥ c.

In view of above, we choose

t = R ·
√

Tr(Σ−1o ∆Σ̃Σ−1o ∆Σ̃) +R2, R = c2

√
k log n

L
(20)

9

for a suitably large constant c2 > 0 to be picked later. Then we have from (19) and (20), with a
probability at least 1− e−c3k logn, for some constant c3 > 0 depending on c2

P

[∣∣∣∣∣ 1

Lσ2
w

L∑
ℓ=1

y⊤ℓ ∆Σ̃yℓ − Tr(∆Σ̃Σ−1o)

∣∣∣∣∣ > R ·
√

Tr(Σ−1o ∆Σ̃Σ−1o ∆Σ̃) +R2

]
≤ 2e−c3k logn. (21)

Next, note that from [46, Chapter 27] we have for any set S ⊆ Rk with supx∈S ∥x∥∞ < τ , the size
of any δ-covering set is bounded as

|Cδ| ≤

(
2τ

√
k

δ

)k

. (22)

In view of the above, by choosing δ = 1
n8 , τ = xmax

√
n
k

we can show that it is possible to construct
a δ-net Cδ of the set Bk(0, xmax

√
n
k
) of size at most |Cδ| ≤ ec0k logn for a constant c0 > 0. In view of

the above covering number bound we can pick c2 > 0 in (21) large enough such that c3 > 2c0 and
we continue (21) to get

P

[∣∣∣∣∣ 1

Lσ2
w

L∑
ℓ=1

y⊤ℓ ∆Σ̃yℓ − Tr(∆Σ̃Σ−1o)

∣∣∣∣∣ > R
√

Tr(Σ−1o ∆Σ̃Σ−1o ∆Σ̃) +R2 for all x̃ ∈ Cδ

]
≤ 2e−c0k logn.

(23)

In view of the covering set argument, there exists x̃ ∈ Cδ such that ∥x̂ − x̃∥2 ≤ δ. Then we use
Lemma VI.10 (with ∆Σ = Σ̂− Σo) to get that the event

E2 =

{∣∣∣∣∣ 1

Lσ2
w

L∑
ℓ=1

y⊤ℓ ∆Σyℓ − Tr(∆ΣΣ−1o)

∣∣∣∣∣ ≤ R
√

Tr(Σ−1o ∆ΣΣ−1o ∆Σ) +R2 +
C̃

n3

}
(24)

satisfies

P [E2] ≥ 1−O
(
e−c4k logn + e−

m
2 + e−

Ln
8

)
. (25)

3) Upper bounding Tr(Σ−1o ∆ΣΣ−1o ∆Σ): Combining (18) and (25), we can see that conditioned on the
event E2 we have

1

2(1 + c̃)2
Tr(Σ−1o ∆ΣΣ−1o ∆Σ) ≤ R

√
Tr(Σ−1o ∆ΣΣ−1o ∆Σ) +R2 +

C̃

n3
. (26)

Defining

z =
√

Tr(Σ−1o ∆ΣΣ−1o ∆Σ), a =
1

2(1 + c̃2)
, b = R, c = R2 +

C̃

n3
, (27)

the last inequality reduces to

az2 − bz − c ≤ 0 (28)

which implies,
b−

√
b2 + 4ac

2a
≤ z ≤ b+

√
b2 + 4ac

2a
,

or in other words, as z in (27) is positive, we get

z2 ≤ 2

(
b2

4a2
+

b2 + 4ac

4a2

)
=

b2

a2
+

2c

a
.

10

Recalling the definitions from (27) the above inequality transforms into

Tr(Σ−1o ∆ΣΣ−1o ∆Σ) ≤ 4(1 + c̃2)2 · R2 + 8(1 + c̃2)(R2 +
C̃

n3
) ≤ 4(1 + c̃2)2

{
3R2 +

C̃

n3

}
. (29)

4) Lower bounding Tr(Σ−1o ∆ΣΣ−1o ∆Σ) in terms of ∥xo − x̂∥2: Using Lemma VI.7 we get

Tr(Σ−1o ∆ΣΣ−1o ∆Σ) ≥ x4
minλ

2
min(AA

⊤)

x8
maxλ

4
max(AA

⊤)
∥A(X̂2 −X2

o)A
⊤∥2HS. (30)

To obtain a lower bound for ∥A(X̂2 −X2
o)A

⊤∥2HS we first write:

X̂2 = X̂2 − X̃2 + X̃2,

where X̃ = diag(x̃) is chosen from the δ-net with δ = 1
n8 ,such that ∥x̂−x̃∥2 ≤ δ. Using (∥B+C∥2HS ≤

2 (∥B∥2HS + ∥C∥2HS)) we get

∥A(X̂2 −X2
o)A

⊤∥2HS ≥ 1

2
∥A(X̃2 −X2

o)A
⊤∥2HS − ∥A(X̃2

o − X̂2)A⊤∥2HS (31)

We bound ∥A(X̃2 − X̂2)A⊤∥2HS from above via inequalities on the Hilbert-Schmidt norm and the
operator norm, [47, Chapter IX], conditioned on the high probability event E4 as in (16)

∥A(X̃2 − X̂2)A⊤∥2HS ≤ (σmax(A))
4∥X̃2 − X̂2∥2HS ≤ (2xmax)

2n2∥x̃− x̂∥22 ≤ (2xmax)
2n2δ2. (32)

Then it remains to find a lower bound for ∥A(X̃2 −X2
o)A

⊤∥HS in terms of ∥xo − x̂∥2.
Towards this goal, for γ > 0 define E1(γ) as the event that

∥A(X̃2 −X2
o)A

⊤∥2HS ≥ m(m− 1)∥x2
o − x̃2∥22 −m2nγ,

We show that for an appropriate value of γ this event holds with high probability. In Lemma VI.11,
we will prove that

P(Ec1)
(a)

≤ 2Cek log
2k
δ exp

(
−c ·min

(α̌m,nγ2

x8
max

,
β̌m,nγ

x4
max

))
+ 2ek log

2k
δ
−n/2

≤ 2Cek log
2k
δ

(
e
−c α̌m,nγ2

x8max + e
−c β̌m,nγ

x4max

)
+ 2ek log

2k
δ
−n

2

= 2Cek log
2k
δ e
− cm2γ2

C2x8max(2+
√

m/n)4 + 2Cek log
2k
δ e
− cm2γ

Cx4max(2+
√

m/n)2 + 2ek log
2k
δ
−n/2, (33)

where

α̌m,n ≜
m4n2

C2m2(2
√
n+

√
m)4

=
m2n2

C2(2
√
n+

√
m)4

,

β̌m,n ≜
m2n

C(2
√
n+

√
m)2

. (34)

By combining the result (22), the union bound on the choice of x̃ and Lemma VI.11 we reach
Inequality (a). By setting

γ = 2C
x4
max(2 +

√
m/n)2

m
√
c

√
k log

2k

δ
, (35)

11

we have on the event E1

∥A(X̃2 −X2
o)A

⊤∥2HS ≥ m(m− 1)
n∑
i

(x̃2
i − x2

o,i)
2 − C̃mn

√
k log

2k

δ

= m(m− 1)
n∑
i

(x̃i − xo,i)
2(x̃i + xo,i)

2 − C̃mn

√
k log

2k

δ

≥ 4m(m− 1)x2
min

n∑
i

(x̃i − xo,i)
2 − C̃mn

√
k log

2k

δ

= 4m(m− 1)x2
min∥x̃− xo∥22 − C̃mn

√
k log

2k

δ
(36)

with probability

P(Ec1) ≤ O(e−k log
k
δ + ek log

k
δ
−n

2). (37)

In the above equations C̃ is a constant that does not depend on m,n or δ. Furthermore, in the last
display we have assumed that m is large enough (and hence γ is small enough) to make the inequality

m2γ2

C2x8max(2+
√
m/n)4

< m2γ

Cx4max(2+
√
m/n)2

true. Simplifying the above, with

∥x̂− xo∥2 ≤ ∥x̃− xo∥2 + ∥x̂− x̃∥2 ≤ ∥x̃− xo∥2 + δ,

we use (b+ c)2 ≤ 2(b2 + c2) with b = ∥x̃− xo∥2, c = δ to get

∥A(X̃2 −X2
o)A

⊤∥2HS ≥ 4m(m− 1)x2
min∥x̃− xo∥22 − C̃mn

√
k log

2k

δ

≥ 4m(m− 1)x2
min

(
1

2
∥x̂− xo∥22 − δ2

)
− C̃mn

√
k log

2k

δ
(38)

In view of (31), we combine (30),(32),(38) to get

x8
maxλ

4
max(AA

⊤)

x4
minλ

2
min(AA

⊤)
Tr(Σ−1o ∆ΣΣ−1o ∆Σ) ≥ 1

2
∥A(X̃2 −X2

o)A
⊤∥2HS − (2xmax)

2n2δ2

≥ 4m(m− 1)x2
min

2

(
1

2
∥x̂− xo∥22 − δ2

)
− C̃mn

√
k log

2k

δ
− (2xmax)

2n2δ2.

5) Combining the results: In view of (29) and the last display, on the event E4 as in (16) we get

4m(m− 1)x2
min

2

(
1

2
∥x̂− xo∥22 − δ2

)
− C̃mn

√
k log

2k

δ
− (2xmax)

2n2δ2

≤ C̃2
x8
maxλ

4
max(AA

⊤)

x4
minλ

2
min(AA

⊤)
·
{
R2 +

1

n3

}
≤ C̃3n

2

(
k log n

L
+

1

n3

)
,

for constants C1, C̃ > 0 depending on xmin, xmax. Simplifying with δ = 1
n8 , and (37),(25),(16) we get

1

n
∥x̂− xo∥22 ≤ C̃4

(
n

m2
· k log n

L
+

√
k log n

m

)
.

for a constant C̃4 > 0 depending on xmin, xmax, on the event E = E1 ∩ E2 ∩ E4 with P[E] ≥
1 − C2

(
e−

m
2 + e−

Ln
8 + e−C3k logn + ek logn−

n
2

)
for some constants C2, C3 > 0. This completes our

proof of Theorem III.1.

12

IV. MAIN ALGORITHMIC CONTRIBUTIONS

A. Summary of Projected Gradient Descent and DIP
As discussed in Section I, we aim to solve the optimization problem (5) under the DIP hypothesis. A

popular heuristic for achieving this goal is using projected gradient descent (PGD). At each iteration t, the
estimate xt is updated as follows:

xt+1 = Proj(xt − µt∇fL(x
t)), (39)

where Proj(·) projects its input onto the range of the function gθ(u), and µt denotes the step size. The
details of the calculation of ∇fL(x

t) are outlined in Appendix A.
An outstanding question in the implementation pertains to the nature of the projection operation Proj(·).

If gθ(u), in which θ denotes the parameters of the neural network and u denotes the input Gaussian noise,
represents the reconstruction of the DIP, during training, DIP learns to reconstruct images by performing
the following two steps:

θ̂t = argmin
θ

∥gθ(u)− (xt − µt∇fL(x
t))∥,

xt+1 = gθ̂t(u), (40)

where to obtain a local minima in the first optimization problem, we use Adam [48] . One of the main
challenges in using DIPs in PGD is that the performance of DIP gθ(u) is affected by the structure choices,
training iterations as well as the statistical properties of xt − µt∇fL(x

t) [13]. We will discuss this issue
in the next section.

B. Challenges of DIP-based PGD
In this section, we examine two primary challenges encountered by DIP-based PGD and present novel

perspectives for addressing them.
1) Challenge 1: Right choice of DIP: Designing PGD, as described in Section IV-A, is particularly

challenging when it comes to selecting the appropriate network structure for DIP. Figure 1 clarifies the
main reason. In this figure, four DIP networks are used for fitting to the clean image (left panel) and
an image corrupted by the Gaussian noise (right panel). As is clear, the sophisticated networks fit the
clean image very well. However, they are more susceptible to overfitting when the image is corrupted with
noise. On the other hand, the networks with simpler structures do not fit the clean image well but are less
susceptible to noise than the sophisticated DIPs. This issue has been observed in previous work [10], [13].

The problem outlined above poses a challenge for the DIP-based PGD. Note that if xt − µt∇fL(x
t)

closely approximates xo, fitting a highly intricate DIP to xt − µt∇fL(x
t) will yield an estimate that

remains close to xo. Conversely, if overly simplistic networks are employed in this scenario, their final
estimate may fail to closely approach xt − µt∇fL(x

t), resulting in a low-quality estimate. In the converse
scenario, where xt − µt∇fL(x

t) is significantly distant from xo, a complex network may overfit to the
noise. On the contrary, a simpler network, capable of learning only fundamental features of the image,
may generate an estimate that incorporates essential image features, bringing it closer to the true image.

The above argument suggests the following approach: initiate DIP-PGD with simpler networks and
progressively shift towards more complex structures as the estimate quality improves2. However, finding
the right complexity level of the DIP for each iteration of PGD, in which the statistics of the error in the
estimate xt − µt∇fL(x

t) is not known and may be image dependent, is a challenging problem. In the
next section, we propose a novel approach to addressing this issue.

2A somewhat weaker approach would be to use intricate networks at every iteration, but then use some regularization approach such as
early stopping to control the complexity of the estimates.

13

0 1 2 3 4
log10 (Iteration)

12
16
20
24
28
32
36
40
44

PS
NR

 (d
B)

128-128-128-128 kernel 3
128-128-128-128 kernel 1
100-50-25-10 kernel 3
100-50-25-10 kernel 1

0 1 2 3 4
log10 (Iteration)

12

14

16

18

20

22

24

26

PS
NR

 (d
B)

128-128-128-128 kernel 3
128-128-128-128 kernel 1
100-50-25-10 kernel 3
100-50-25-10 kernel 1

Fig. 1. PSNR (averaged over 8 images) versus iteration count is depicted for four DIP models fitted to both clean (left panel) and noisy
images with only additive noise, noise level σ = 25 (right panel). The 4-layer networks used in DIP are specified in the legend.

2) Solution to Challenge 1: Bagged-DIP: Our new approach is based on a classical idea in statistics
and machine learning: Bagging. Rather than finding the right complexity level for the DIP at each iteration,
which is a computationally demanding and statistically challenging problem, we use bagging. The idea of
bagging is that in the case of challenging estimation problems, we create several low-bias and, hopefully,
weakly dependent estimates (we are overloading the phrase weakly dependent to refer to situations in
which the cross-correlations of different estimates are not close to 1 or −1) of a quantity and then calculate
the average of those quantities to obtain a lower-variance estimate. In order to obtain weakly dependent
estimates, a common practice in the literature is to apply the same learning scheme to multiple datasets,
each of which is a random perturbation of the original training set, e.g., the construction of random forests.

While there are many ways to create Bagged-DIP estimates, in this paper, we explore a few very simple
estimates, leaving other choices for future research. First, we select a network that is sophisticated enough
to fit nicely into real-world images. The details of the network we use for this paper can be found in
Appendix C. Using the neural network provides our initial estimate of the image from the noisy observation.
To generate a new estimate, we begin by selecting an integer number k, partitioning an image of size
(H ×W) into non-overlapping patches of sizes (hk × wk). Independent DIPs, with the same structure as
the main one, are then employed to reconstruct each of these (hk×wk) patches. Essentially, the estimation
of the entire image involves learning HW

hkwk
DIP models. By placing these HW

hkwk
patches back into their

original positions, we obtain the estimate of the entire image, denoted as x̌k. A crucial aspect of this
estimate is that the estimation of a pixel relies solely on the (hk × wk) patch to which the pixel belongs
and no other pixel. By iterating this process for K different values of (hk × wk), we derive K estimates
denoted as x̌1, . . . , x̌K . The final sought-after estimate is obtained by averaging the individual estimates.

The estimation of a pixel in x̌k is only dependent on the (hk×wk) patch to which the pixel belongs. As
our estimates for different values of k utilize distinct regions of the image to derive their pixel estimates,
we anticipate these estimates to be weakly dependent (again, in the sense that the cross-correlations are
not close to 1 or −1).

3) Challenge 2: Matrix inversion: As shown in Appendix A, the gradient of fL(x) defined in (2) can
be written as

∂fL
∂xj

= 2xjσ
2
w

(
ã+T
·,j B

−1ã+
·,j + ã−T·,j B

−1ã−·,j
)

− 2xjσ
2
w

L

L∑
ℓ=1

[(
ã+T
·,j B

−1ỹℓ
)2

+
(
ã−T·,j B

−1ỹℓ
)2]

, (41)

14

TABLE I
PSNR (DB) / SSIM ↑ OF 8 TEST IMAGES AT SAMPLING RATES m/n = 0.125, 0.25, 0.5, WITH NUMBER OF LOOKS

L = 1, 2, 4, 8, 16, 32, 64, 128.

m/n #Looks Barbara Peppers House Foreman Boats Parrots Cameraman Monarch Average

0.125

1 13.05/0.126 13.34/0.132 12.90/0.127 11.20/0.083 12.92/0.098 10.40/0.090 9.08/0.069 12.36/0.161 11.91/0.111
2 14.62/0.179 15.03/0.175 15.33/0.190 12.83/0.131 15.54/0.161 12.35/0.146 10.49/0.112 14.15/0.241 13.79/0.167
4 16.11/0.273 16.80/0.322 16.49/0.274 14.29/0.268 17.32/0.247 13.64/0.228 11.75/0.156 15.60/0.327 15.25/0.262
8 16.84/0.376 17.37/0.465 17.51/0.429 14.63/0.446 18.50/0.356 14.19/0.311 12.26/0.203 16.18/0.419 15.94/0.376
16 17.78/0.293 18.11/0.305 18.20/0.286 17.98/0.257 17.86/0.259 15.36/0.279 13.01/0.226 17.26/0.463 16.95/0.296
32 20.88/0.462 20.41/0.438 21.55/0.445 19.64/0.448 20.74/0.398 18.11/0.411 15.68/0.318 19.78/0.570 19.60/0.436
64 21.71/0.587 21.92/0.585 23.52/0.571 20.80/0.590 22.21/0.503 19.27/0.522 17.73/0.407 21.72/0.675 21.11/0.555
128 22.67/0.647 22.70/0.667 24.09/0.651 21.07/0.684 22.33/0.550 19.42/0.587 19.06/0.506 22.77/0.740 21.76/0.629

0.25

1 14.04/0.157 14.41/0.159 14.01/0.146 12.61/0.100 14.24/0.123 11.50/0.125 9.97/0.117 13.28/0.280 13.01/0.151
2 16.23/0.235 16.85/0.245 17.17/0.277 14.74/0.195 16.89/0.208 13.87/0.226 11.96/0.189 16.02/0.392 15.47/0.246
4 18.25/0.388 18.78/0.394 18.67/0.368 16.25/0.321 18.73/0.313 15.31/0.323 13.82/0.256 17.84/0.504 17.21/0.358
8 18.94/0.480 19.41/0.516 20.02/0.530 17.50/0.544 19.90/0.430 16.57/0.436 15.09/0.328 18.84/0.591 18.28/0.482
16 21.76/0.491 21.41/0.445 21.70/0.417 21.01/0.385 20.79/0.398 19.25/0.429 19.13/0.417 20.55/0.612 20.70/0.449
32 23.96/0.611 24.05/0.600 25.17/0.573 23.88/0.593 23.13/0.528 22.18/0.571 22.33/0.526 23.29/0.713 23.50/0.590
64 25.81/0.734 25.74/0.719 27.66/0.683 25.27/0.714 24.84/0.632 23.99/0.671 25.04/0.656 25.23/0.804 25.45/0.702
128 26.70/0.774 26.34/0.782 28.76/0.741 26.54/0.791 25.59/0.683 24.80/0.741 27.01/0.780 26.44/0.857 26.52/0.769

0.5

1 16.31/0.242 16.77/0.246 16.42/0.225 15.70/0.164 16.36/0.213 13.87/0.255 14.00/0.317 15.73/0.413 15.65/0.259
2 19.17/0.388 19.70/0.376 19.57/0.360 17.61/0.297 19.26/0.315 17.03/0.381 18.23/0.503 19.07/0.556 18.70/0.397
4 21.03/0.533 21.57/0.549 22.03/0.518 20.08/0.491 21.74/0.456 19.32/0.515 21.28/0.639 21.78/0.683 21.10/0.548
8 22.19/0.650 22.73/0.666 23.84/0.639 21.51/0.683 22.72/0.565 20.22/0.620 24.27/0.773 23.08/0.760 22.57/0.669
16 25.85/0.691 25.67/0.636 26.53/0.609 25.77/0.621 24.83/0.596 24.52/0.664 25.87/0.675 25.48/0.789 25.56/0.660
32 27.77/0.780 27.70/0.753 29.26/0.725 27.76/0.758 26.81/0.699 26.23/0.752 28.47/0.778 27.84/0.868 27.73/0.764
64 28.91/0.823 28.70/0.825 30.90/0.790 28.99/0.842 27.98/0.763 27.64/0.822 30.47/0.859 29.30/0.914 29.11/0.830
128 29.43/0.846 29.37/0.861 31.71/0.824 29.33/0.885 28.57/0.792 28.28/0.859 31.76/0.911 30.07/0.937 29.82/0.864

where ã+
·,j =

[
ℜ(a·,j)
ℑ(a·,j)

]
, ã−·,j =

[
−ℑ(a·,j)
ℜ(a·,j)

]
, ỹℓ =

[
ℜ(yℓ)
ℑ(yℓ)

]
, a·,j denotes the j-th column of matrix A. It’s

important to highlight that in each iteration of the PGD, the matrix B changes because it depends on the
current estimate xt. This leads to the computation of the inverse of a large matrix B ∈ R2m×2m at each
iteration, posing a considerable computational challenge and a significant obstacle in applying DIP-based
PGD for this problem. In the next section, we present a solution to address this issue.

4) Solution to Challenge 2: To address the challenge mentioned in the previous section, we propose
using the Newton-Schulz algorithm. Newton-Schulz is an iterative algorithm for obtaining a matrix inverse.
The iterations of Newton-Schulz for finding (Bt)

−1 is given by

Mk = Mk−1 +Mk−1(I −BtM
k−1), (42)

where Mk is the approximation of (Bt)
−1 at iteration k. M0 = (Bt−1)

−1. It is shown that if σmax(I −
M0Bt) < 1, the Newton-Schulz converges to B−1t quadratically fast [49], [50].

An observation to alleviate the issue mentioned in the previous section is that, given the nature of
gradient descent, we don’t anticipate significant changes in the matrix X2

t from one iteration to the next.
Consequently, we expect Bt and Bt−1, as well as their inverses, to be close to each other. Hence, instead
of calculating the full inverse at iteration t+ 1, we can employ the Newton-Schulz algorithm with M0

set to (Bt)
−1 from the previous iteration. Our simulations will show that one step of the Newton-Schulz

algorithm suffices.

V. SIMULATION RESULTS

A. Study of the Impacts of Different Modules
1) Newton-Schulz iterations: In this section, we aim to answer the following questions: (1) Is the

Newton-Schulz algorithm effective in our Bagged-DIP-based PGD? (2) What is the minimum number of
iterations for the Newton-Schulz algorithm to have good performance in Bagged-DIP-based PGD? (3)
How does the computation time differ when using the Newton-Schulz algorithm compared to exact inverse
computation?

15

0 10 20 30 40 50
Iteration

10

13

16

19

22

25

28

PS
NR

 (d
B)

Newton-Schulz
All exact inversion
5 exact inversion
10 exact inversion
20 exact inversion

Fig. 2. Newton-Schulz approximation compared with computing exact inverse for all interations, the rest of the curves correspond to stopping
the update of the inverse after the first 5, 10, and 20 iterations respectively. The number of looks is L = 32, sampling rate is m/n = 0.5.
The test image is “Cameraman”.

Figure 2 shows one of the simulations we ran to address the first two questions. In this figure, we have
chosen L = 32 and m/n = 0.5, and the learning rate of PGD is 0.01. The result of Bagged-DIP-based
PGD with a single step of Newton-Schulz is virtually identical to PGD with the exact inverse. To
investigate the impact of the Newton-Schulz algorithm further, we next checked if applying even one step
of Newton-Schulz is necessary. Hence, in three different simulations we stopped the matrix inverse update
at iterations 5, 10, and 20. As is clear from Figure 2, a few iterations after stopping the update, PGD starts
diverging. Hence, we conclude that a single step of the Newton-Schulz is necessary and sufficient for
PGD.

To address the last question raised above, we evaluated how much time the calculation of the gradient
takes if we use one step of the Newton-Schulz compared to the full matrix inversion. Our results are
reported in Table II. Our simulations are for sampling rate 50%, and number of looks L = 50 and three
different images sizes.3 As is clear the Newton-Schulz is much faster.

TABLE II
RUNTIME (IN SECONDS) FOR MATRIX INVERSION AND ITS NEWTON–SCHULZ APPROXIMATION IN EACH PGD STEP.

Method 32×32 64×64 128×128

GD w/ Newton–Schulz ∼7e-5 ∼8e-5 ∼1e-4
GD w/o Newton–Schulz ∼0.3 ∼1.2 ∼52.8

In our final algorithm, i.e. Bagged DIP-based PGD, if the difference between ∥xt − xt−1∥∞ > δx,
then we use the exact inverse update. δx is set to 0.12 (please refer to Appendix C for details) in all our
simulations. Based on this updating criterion, we observe that the exact matrix inverse is only required for
the first 2-3 iterations, and it is adaptive enough to guarantee the convergence of PGD.

2) Bagged-DIP: Intuitively speaking, in bagging, the more weakly dependent estimates one generate
the better the average estimate will be. In the context of DIPs, there appear to be many different ways to
create weakly dependent samples. The goal of this section is not to explore the full-potential of Bagged-
DIPs. Instead, we aim to demonstrate that even a few weakly dependent samples can offer noticeable
improvements. Hence, unlike the classical applications of bagging in which thousands of bagged samples
are generated, to keep the computations managable, we have only considered three bagged estimates.

3Our algorithm still faces memory limitations on a single GPU when processing 256×256 images. Addressing this issue through approaches
like parallelization remains subject for future research.

16

Figure 3 shows one of our simulations. In this simulation we have chosen K = 3, i.e. we have only three
weakly-dependent estimates. These estimates are constructed according to the recipe presented in Section
IV-B2 with the following patch sizes: h1 = w1 = 32, h2 = w2 = 64, and h3 = w3 = 128. As is clear from
the left panel of Figure 3, even with these very few samples, Bagged-DIPs has offered between 0.5dB and
1dB over the three estimates it has combined.

0 10 20 30 40 50
Iteration

14

17

20

23

26

29

PS
NR

 (d
B)

bagged 3 estimates
estimate 1
estimate 2
estimate 3

30 40 50
27.0

27.5

28.0

28.5

29.0

0 10 20 30 40 50
Iteration

14

18

22

26

30

PS
NR

 (d
B)

bagging L=16
bagging L=32
bagging L=64

simple L=16
simple L=32
simple L=64

Fig. 3. (Left) We compare a Bagged-DIP with three sophisticated DIP estimates, where L = 32, m/n = 0.5. (Right) We compare PGD
with simple and Bagged-DIP across different looks L = 16, 32, 64. The test image is “Cameraman”.

3) Simple architectures versus Bagged-DIPs: So far our simulations have been focused on sophisticated
networks. Are simpler networks that trade variance for the bias able to offer better performance? The
right panel of Figure 3 compares the performance of Bagged-DIP-based PGD with that of PGD with a
simple DIP. Not only this figure shows the major improvement that is offered by using more complicated
networks (in addition to bagging), but also it clarifies one of the serious limitations of the simple networks.
Note that as L increases, the performance of PGD with simple DIP is not improving. In such cases, the
low-accuracy of DIP blocks the algorithm from taking advantage of extra information offered by the new
looks.

B. Performance of Bagged-DIP-based PGD
In this section, we offer a comprehensive simulaion study to evaluate the performance of the Bagged-

DIP-based PGD on several images. We explore the following settings in our simulations:
• Number of looks (L): L = 1, 2, 4, 8, 16, 32, 64, 128.
• Undersampling rate (m

n
): m

n
= 0.125, 0.25, 0.5.

For each combination of L and m/n, we pick one of the 8, 128× 128 images mentioned in Table I.4

We then generate the matrix A ∈ Cm×n by selecting the first m rows of a matrix that is drawn from the
Haar measure on the space of orthogonal matrices. We then generate w1, . . . ,wL ∼ CN (0, 1), and for
ℓ = 1, 2, . . . , L, calculate yℓ = AXowℓ.

For our implementation of Bagged-DIP-based PGD, we have made the following choices:
• Initialization: We initialize our algorithm with x0 =

1
L

∑L
ℓ=1 |Ā⊤yℓ|. However, the final performance

of DIP-based PGD is robust to the choice of initialization.
• Learning rate: We have selected a learning rate of 0.001 for the gradient desent of the likelihood

when L ≤ 8, and 0.01 otherwise, and learning rate of 0.001 in the training of DIPs.
• Number of iterations of SGD for training DIP: The details are presented in Table III in the appendix.
• Number of iterations of PGD: We run the outer loop (gradient descent of likelihood) for 100, 200, 300

iterations when m/n = 0.5, 0.25, 0.125 respectively.

4Images from the Set11 [51] are chosen and cropped to 128× 128 for computational manageability in Table I.

17

The peak signal-to-noise-ratio (PSNR) and structural index similarity (SSIM) of our reconstructions are
all reported in Table I.

There are no other existing algorithms that are applicable in the undersampled regime (m < n) considered
in this paper. The only algorithm addressing speckle noise in ill-conditioned and undersampled scenarios
prior to our work is the vanilla PGD proposed in [25]. It can be seen that, for L = 100, L = 50, and
L = 25 on average (being averaged over m/n = 0.125, 0.25, 0.5, and across all images) our algorithm
outperforms the one presented in [25] by 1.09 dB, 1.47 dB, and 1.27 dB, respectively.

VI. TECHNICAL RESULTS

We present a few lemmas that are used in the proof of Theorem III.1.

Lemma VI.1. Let B and C denote two n× n symmetric and invertible matrices. Then, if λi represents
the ith eigenvalue of B−1 − C−1, we have |λi| ∈ [− σmax(B−C)

σmin(B)σmin(C)
, σmax(B−C)
σmin(B)σmin(C)

].

Proof. Suppose λi is the ith eigenvalue of B−1 − C−1. Then, there exists a norm 1 vector v ∈ Rn such
that

(B−1 − C−1)v = λiv.

Multiplying both sides by B, we have

(I −BC−1)v = λiBv.

Define u = C−1v. Then, we have (C −B)u = λiBCu, or equivalently

λiu = (BC)−1(C −B)u.

Hence,

|λi| ≤
σmax(C −B)

σmin(B)σmin(C)
.

Lemma VI.2. [52] Let the elements of an m×n (m < n) matrix A be drawn independently from N (0, 1).
Then, for any t > 0,

P(
√
n−

√
m− t ≤ σmin(A) ≤ σmax(A) ≤

√
n+

√
m+ t) ≥ 1− 2e−

t2

2 . (43)

Lemma VI.3 (Concentration of χ2 [53]). Let Z1, Z2, . . . , Zn denote a sequence of independent N (0, 1)
random variables. Then, for any t ∈ (0, 1), we have

P(
n∑
i=1

Z2
i ≤ n(1− t)) ≤ e

n
2
(t+log(1−t)).

Also, for any t > 0,

P(
n∑
i=1

Z2
i ≥ n(1 + t)) ≤ e−

n
2
(t−log(1+t)).

Theorem VI.4 (Hanson-Wright inequality). Let X = (X1, ..., Xn) be a random vector with independent
components with E[Xi] = 0 and ∥Xi∥Ψ2 ≤ K. Let A be an n× n matrix. Then, for t > 0,

P
(
|X⊤AX − E[X⊤AX]| > t

)
≤ 2 exp

(
−cmin

(
t2

K4∥A∥2HS
,

t

K2∥A∥2

))
, (44)

where c is a constant, and ∥X∥ψ2 = inf{t > 0 : E(exp(X2/t2)) ≤ 2}.

Theorem VI.5 (Decoupling of U-processes, Theorem 3.4.1. of [54]). Let X1, X2, . . . , Xn denote random
variables with values in measurable space (S,S). Let (X̃1, X̃2, . . . , X̃n) denote an independent copy of

18

X1, X2, . . . , Xn. For i ̸= j let hi,j : S2 → R. Then, there exists a constant C such that for every t > 0 we
have

P
(
|
∑
i ̸=j

hi,j(Xi, Xj)| > t
)
≤ CP

(
C|
∑
i ̸=j

hi,j(Xi, X̃j)| > t
)
.

Lemma VI.6. [11] For x̃ ∈ Rn and xo ∈ Rn, let X̃ = diag(x̃), Xo = diag(xo). Assume that AX̃2A⊤

and AX2
oA
⊤ are both invertible and define Σ̃ = (AX̃2A⊤)−1,Σo = (AX2

oA
⊤)−1,∆Σ̃ = Σ̃−Σo. Let λmax

be the maximum eigen value of Σ
− 1

2
o ∆Σ̃Σ

− 1
2

o . Then,

f̄(Σ̃)− f̄(Σo) ≥
1

2(1 + λmax)2
Tr(Σ−1o ∆Σ̃Σ−1o ∆Σ̃), (45)

Lemma VI.7. [11] Consider two m ×m matrices Σ̃ = (AX̃2A⊤)−1 and Σ = (AX2A⊤)−1 and define
∆Σ = Σ̃− Σ. Then,

Tr(Σ−1∆ΣΣ−1∆Σ) ≥ x4
minλ

2
min(AA

⊤)

x8
maxλ

4
max(AA

⊤)
∥A(X̃2 −X2)A⊤∥2HS (46)

Tr(Σ−1∆ΣΣ−1∆Σ) ≤ x4
maxλ

2
max(AA

⊤)

x8
minλ

4
min(AA

⊤)
∥A(X̃2 −X2)A⊤∥2HS. (47)

Lemma VI.8. Assume that Σ̃ = AX̃2A⊤ and Σo = AX2
oA
⊤ are both invertible. Define ∆Σ̃ = Σ̃−Σo. Let

δf(Σ) =
1

Lσ2
w

L∑
ℓ=1

y⊤ℓ Σyℓ − Tr(ΣΣ−1o).

Then, for t > 0, there exists a constant c independent of m,n, xmin, and xmax, such that

P(|δf(∆Σ̃)| ≥ t|A) ≤ 2 exp

(
−c·min

{
L2t2

Tr(Σ−1o ∆Σ̃Σ−1o ∆Σ̃)
,

Lt · x4
minλ

2
min(AA

⊤)

x2
max(σmax(A))2λmax(AA⊤)∥x2

o − x̃2∥∞

})
.

Proof. Define matrix B = XoA
⊤∆Σ̃AXo ∈ Rn×n and B̃ ∈ RLn×Ln as

B̃ =

B 0 · · · 0
0 B · · · 0
0 0 · · · 0
0 0 · · · B

 .

Furthermore, fr wi
iid∼ N (0, σ2

wIn) define

W⊤ = [w⊤1 ,w
⊤
2 , . . . ,w

⊤
L].

Note that for any fixed ∆Σ̃ we have,

E
[
W⊤BW

]
= LE[w⊤1 Bw1] = LE[Tr(Bw1w

⊤
1)]

(a)
= Lσ2

wTr(∆Σ̃AX2
oA
⊤) = Lσ2

wTr(∆Σ̃Σ−1o).

where (a) followed using Tr(AB) = Tr(BA) for two matrices A,B. Then, by the Hanson-Wright inequality
(Theorem VI.4), we have

P(| 1

Lσ2
w

W⊤B̃W − Tr(∆Σ̃Σ−1o)| > t) ≤ 2 exp

(
− c ·min

{
L2t2

∥B̃∥2HS
,

Lt

∥B̃∥2

})
. (48)

Next, note that

∥B̃∥2HS = LTr(B2) = LTr(XoA
⊤∆Σ̃AX2

oA
⊤∆Σ̃AXo) = LTr(AX2

oA
⊤∆Σ̃AX2

oA
⊤∆Σ̃) (49)

19

and using ∥B̃∥2 = ∥B∥2

∥B̃∥2 = ∥XoA
⊤∆Σ̃AXo∥2

≤ x2
maxσmax(A)σmax(A

⊤)σmax(∆Σ̃)

(a)

≤ x2
max(σmax(A))

2σmax(AX
2
oA
⊤ − AX̃2A⊤)

σmin(AX̂2A⊤)σmin(AX̃2A⊤)
≤ x2

max(σmax(A))
2λmax(AA

⊤)∥x2
o − x̃2∥∞

x4
minλ

2
min(AA

⊤)
, (50)

where (a) followed using Lemma VI.1. Substituting the above in (48) we conclude the result.

Lemma VI.9. Assume that both Σ̃ = (AX̃2A⊤)−1 and Σ̂ = (AX̂2A⊤)−1 exists. Then,

|λi(Σ
− 1

2
o (Σ̂− Σ̃)Σ

− 1
2

o)| ∈ [0,
x2
maxλ

2
max(AA

⊤)∥x̂2 − x̃2∥∞
x4
minλ

2
min(AA

⊤)
].

Furthermore, we have∣∣∣∣∣ 1

Lσ2
w

L∑
ℓ=1

y⊤ℓ (Σ̂− Σ̃)yℓ

∣∣∣∣∣ ≤ x2
maxλ

2
max(AA

⊤)∥x̂2 − x̃2∥∞
x4
minλ

2
min(AA

⊤)

(
1 +

1

Lσ2
w

L∑
ℓ=1

w⊤ℓ wℓ

)
. (51)

Proof. To prove the first inequality, we note that

|λi(Σ
− 1

2
o (Σ̂− Σ̃)Σ

− 1
2

o)| ≤

∣∣∣σmax(Σ̂− Σ̃)
∣∣∣

σmin(Σo)
=

∣∣∣σmax((AX̂
2A⊤)−1 − (AX̃2A⊤)−1)

∣∣∣
σmin(Σo)

(a)

≤ σmax((AX̂
2A⊤)− (AX̃2A⊤))

σmin(Σo)σmin(AX̂2A⊤)σmin(AX̃2A⊤)

=
σmax(AX

2
oA
⊤)
∣∣∣σmax(A(X̂

2 − X̃2)A⊤)
∣∣∣

σmin(AX̂2A⊤)σmin(AX̃2A⊤)
≤ x2

maxλ
2
max(AA

⊤)∥x̂2 − x̃2∥∞
x4
minλ

2
min(AA

⊤)
.

To obtain inequality (a) we have used Lemma VI.1. To prove the second inequality, note that∣∣∣∣∣ 1

Lσ2
w

L∑
ℓ=1

y⊤ℓ (Σ̂− Σ̃)yℓ

∣∣∣∣∣
≤
∣∣∣σmax((AX̂

2A⊤)−1 − (AX̃2A⊤)−1)
∣∣∣ 1

Lσ2
w

L∑
ℓ=1

y⊤ℓ yℓ

≤ λmax(AA
⊤)∥x̂2 − x̃2∥∞

x4
minλ

2
min(AA

⊤)

1

Lσ2
w

L∑
ℓ=1

y⊤ℓ yℓ ≤
x2
maxλ

2
max(AA

⊤)∥x̂2 − x̃2∥∞
Lσ2

wx
4
minλ

2
min(AA

⊤)

L∑
ℓ=1

w⊤ℓ wℓ.

Lemma VI.10. Define h(Σ) = 1
Lσ2

w

∑L
ℓ=1 y

⊤
ℓ (Σ− Σo)yℓ−Tr((Σ−Σo)Σ

−1
o) and denote Σ̂ = (AX̂2A⊤)−1,Σo =

(AX2
oA
⊤)−1, Σ̃ = (AX̃2A⊤)−1 as usual. There exists a constant C̃ such that given any x̂ = gθ̂(u) and

x̃ = gθ̃(u) with ∥θ̂ − θ̃∥2 ≤ δ the following holds.

(a.) P
[
|h(Σ̃o)− h(Σ̂o)| ≤ C̃nδ

]
≥ 1−O(e−

m
2 + e−

Ln
8)

(b.) P
[∣∣∣∣√Tr(Σ−1o ∆Σ̃Σ−1o ∆Σ̃)−

√
Tr(Σ−1o ∆ΣΣ−1o ∆Σ̃)

∣∣∣∣ ≤ x3maxλ
3
max(AA

⊤)∥x̂2−x̃2∥∞
x5minλ

3
min(AA

⊤)

]
≥ 1− 2e−

m
2

Proof. (a.) We start with proving the first result. In view of VI.9, the main objective of this proof strategy
is to obtain upper bound for the following three terms:
• 1

Lσ2
w

∑
ℓw
⊤
ℓ wℓ:

20

Consider the following event:

E3 =

{
1

Lσ2
w

L∑
ℓ=1

w⊤ℓ wℓ ≤ 2n

}
It is straightforward to use Lemma VI.3 to see that

P(E3) ≥ 1− e−
Ln
8 .

Hence, for the rest of the proof we will consider the high probability event E3.
•

λ2max(AA
⊤)

λ2min(AA
⊤)

:
Consider the event E4 described in (16)

E4 = {
√
n− 2

√
m ≤ σmin(A) ≤ σmax(A) ≤

√
n+ 2

√
m}

Then, in view of Lemma VI.2 we get P[E4] ≥ 1−2e−
m
2 . Hence, conditioned on E4 it is straightforward

to see that

λ2
max(AA

⊤)

λ2
min(AA

⊤)
≤ (

√
n+ 2

√
m)2

(
√
n− 2

√
m)2

, (52)

with probability

P(E4) ≥ 1− 2 exp(−m

2
). (53)

• ∥x̂2 − x̃2∥∞: It is straightforward to use Lipschitzness of gθ̃(u) to prove that

∥x̃− x̂∥2 ≤ ∥θ̃ − θ̂∥2 ≤ δ, (54)

and
∥x̂2 − x̃2∥∞ ≤ 2xmax∥x̂− x̃∥∞ ≤ 2xmax∥x̂− x̃∥2 ≤ 2xmaxδ,

Summarizing the discussions of this section, we can conclude from VI.9∣∣∣∣∣ 1

Lσ2
w

L∑
ℓ=1

y⊤ℓ ((AX̂
2A⊤)−1 − (AX̃2A⊤)−1)yℓ

∣∣∣∣∣ ≤ C̃1nδ (55)

for a constant C̃1 > 0. To complete the proof we exhibit the following bound on
∣∣∣λmax((Σ̂− Σ̃)Σ−1o)

∣∣∣∣∣∣λmax((Σ̂− Σ̃)Σ−1o)
∣∣∣ (a)= ∣∣∣λmax(Σ

− 1
2

o (Σ̂− Σ̃)Σ
− 1

2
o)
∣∣∣ ≤ x2

maxλ
2
max(AA

⊤)∥x̂2 − x̃2∥∞
x4
minλ

2
min(AA

⊤)
. (56)

where (a) followed as the maximum absolute eigenvalues of AB and BA are equal. Hence, on the
event E4 as in (16) we use (52) to get∣∣∣Tr((Σ̂− Σ̃)Σ−1o)

∣∣∣ = C̃2nδ. (57)

(b.) To prove the second result in view of (57) we note

Tr(Σ−1o ∆Σ̃Σ−1o ∆Σ̃)− Tr(Σ−1o ∆ΣΣ−1o ∆Σ)

= Tr((Σ−1o ∆Σ̃)2)− Tr((Σ−1o ∆Σ)2)

= Tr((Σ−1o (Σ̂− Σ̃))(Σ−1o (∆Σ̃ + ∆Σ)))

≤ n|λmax(Σ
−1
o (Σ̂− Σ̃))| · |λmax(Σ

−1
o (∆Σ̃ + ∆Σ))| ≤ C̃2nδ · |λmax(Σ

−1
o (∆Σ̃ + ∆Σ))|. (58)

21

Finally, we note that

|λmax(Σ
−1
o (∆Σ̃ + ∆Σ))| ≤ σmax(∆Σ̃ + ∆Σ)

σmin(Σo)

=

∣∣∣σmax((AX̂
2A⊤)−1 + (AX̃2A⊤)−1 − 2(AX2

oA
⊤)−1)

∣∣∣
σmin(Σo)

≤

∣∣∣σmax((AX̂
2A⊤)−1)

∣∣∣+ ∣∣∣σmax((AX̃
2A⊤)−1)

∣∣∣+ 2
∣∣σmax((AX

2
oA
⊤)−1)

∣∣
σmin(Σo)

= σmax(AX
2
oA
⊤)

(
1

σmin(AX̂2A⊤)
+

1

σmin(AX̃2A⊤)
+

2

σmin(AX2
oA
⊤)

)

≤ 4x2
maxλmax(AA

⊤)∥x̂2 − x̃2∥∞
x2
minλmin(AA⊤)

. (59)

Hence, we continue (58) to get

Tr(Σ−1o ∆Σ̃Σ−1o ∆Σ̃)− Tr(Σ−1o ∆ΣΣ−1o ∆Σ) ≤ 4C̃2nδx
2
maxλmax(AA

⊤)∥x̂2 − x̃2∥∞
x2
minλmin(AA⊤)

≤ C̃3nδ.

where the last inequality holds on the event E4 as in (16) for a suitable constant C̃3. Next we note
the fact that for a, b, c ≥ 0, we have a− b < c means

√
a−

√
b ≤

√
c (as otherwise

√
a−

√
b >

√
c

will mean a > b+ c+ 2
√
bc, leading to a contradiction). Hence we have on event E4√

Tr(Σ−1o ∆Σ̃Σ−1o ∆Σ̃)−
√

Tr(Σ−1o ∆ΣΣ−1o ∆Σ) ≤
√

C̃3nδ.

This completes the proof.

Lemma VI.11. Let the elements of m× n matrix A be drawn i.i.d. N (0, 1). For any given d ∈ Rn, define
D = diag(d). Then,

P(∥ADA⊤∥2HS ≤ m(m− 1)
n∑
i=1

d2i − t) ≤ 2C exp

(
−cmin

(t2

C2∥d∥4∞qm,n
,

t

C∥d∥2∞q̃m,n

))
+ 2e−

n
2 , (60)

where C and c are the constants that appeared in Lemmas VI.5 and VI.4, and

qm,n ≜ m2(2
√
n+

√
m)4,

q̃m,n ≜ (2
√
n+

√
m)2. (61)

Proof. Let a⊤i denote the ith row of matrix A. We have

∥ADA⊤∥2HS =
m∑
i=1

m∑
j=1

|a⊤i Daj|2 ≥
m∑
i=1

∑
j ̸=i

|a⊤i Daj|2. (62)

Note that

E(
m∑
i=1

∑
j ̸=i

|a⊤i Daj|2) = m(m− 1)
n∑
i=1

d2i .

22

Using Theorem VI.5 we conclude that there exists a constant C such that

P(|
m∑
i=1

∑
j ̸=i

|a⊤i Daj|2 −m(m− 1)
n∑
i=1

d2i | > t)

≤ CP(C|
m∑
i=1

∑
j ̸=i

|a⊤i Dãj|2 −m(m− 1)
n∑
i=1

d2i | > t)

= CP(C|
m∑
i=1

a⊤i D
∑
j ̸=i

ãjã
⊤
j Dai −m(m− 1)

n∑
i=1

d2i | > t), (63)

where ã1, ã2, . . . , ãm denote independent copies of a1,a2, . . . ,am. Define Ã as the matrix whose rows
are ã⊤1 , ã

⊤
2 , . . . , ã

⊤
m . Also, let Ã\i denote the matrix that is constructed by removing the ith row of Ã.

Define

F ≜

 DÃ⊤\1Ã\1D 0 . . . 0

0 DÃ⊤\2Ã\2D . . . 0

0 0 . . . DÃ⊤\mÃ\mD

 .

and
v⊤ = [a⊤1 ,a

⊤
2 , . . . ,a

⊤
m].

Using Theorem VI.4 we have

P(C|
m∑
i=1

a⊤i D
∑
j ̸=i

ãjã
⊤
j Dai −m(m− 1)

n∑
i=1

d2i | > t | Ã)

= P(C|v⊤Fv − Ev⊤Fv| > t | Ã)

≤ 2 exp

(
−cmin(

t2

C2∥F∥2HS
,

t

C∥F∥2
)

)
(64)

Hence, in order to obtain a more explicit upper bound, we have to find upper bounds for ∥F∥2 and ∥F∥2HS.
First note that

λmax(F) = max
i

(λmax(DÃ⊤\iÃ\iD)) ≤ λmax(DÃ⊤ÃD) ≤ ∥d∥2∞λmax(Ã
⊤Ã). (65)

Similarly,

∥F∥2HS =
m∑
i=1

∥DÃ⊤\iÃ\iD∥2HS
(a)

≤
m∑
i=1

mλ2
max(DÃ⊤\iÃ\iD)

(b)

≤ m2∥d∥4∞λ2
max(Ã

⊤Ã), (66)

where Inequality (a) uses the fact that the rank of matrix DÃ⊤\iÃ\iD is m− 1, and Inequality (b) uses
(65). Finally, using Lemma VI.2 we have

P(σmax(Ã) > 2
√
n+

√
m) ≤ 2e−

n
2 , (67)

and hence
P(λmax(Ã

⊤A) > (2
√
n+

√
m)2) ≤ 2e−

n
2 . (68)

By combining (63) and (64) we obtain

P(|
m∑
i=1

∑
j ̸=i

|a⊤i Daj|2 −m(m− 1)
n∑
i=1

d2i | > t | Ã) ≤ 2CE
(
exp

(
−cmin

(t2

C2∥F∥2HS
,

t

C∥F∥2

)))
,

(69)

23

where the expected value is with respect to the randomness in F or equivalently Ã.
Let the event E denote the event of σmax(Ã) ≤ 2

√
n+

√
m, and IE denote the indicator function of the

event E . Then, using (69) we have

P(|
m∑
i=1

∑
j ̸=i

|a⊤i Daj|2 −m(m− 1)
n∑
i=1

d2i | > t)

= P({|
m∑
i=1

∑
j ̸=i

|a⊤i Daj|2 −m(m− 1)
n∑
i=1

d2i | > t} ∩ E)

+ P({|
m∑
i=1

∑
j ̸=i

|a⊤i Daj|2 −m(m− 1)
n∑
i=1

d2i | > t} ∩ Ec)

≤ E

(
P(|

m∑
i=1

∑
j ̸=i

|a⊤i Daj|2 −m(m− 1)
n∑
i=1

d2i | > t | Ã)IE

)
+ P(Ec)

≤ 2CE
(
exp

(
−cmin

(t2

C2∥F∥2HS
,

t

C∥F∥2

))
IE
)
+ P(Ec)

≤ 2C exp

(
−cmin

(t2

C2∥d∥4∞qm,n
,

t

C∥d∥2∞q̃m,n

))
+ 2e−

n
2 . (70)

VII. CONCLUSION

We have explored the theoretical and algorithmic aspects of the problem of signal recovery from multiple
sets of measurements, termed as looks, amidst the presence of speckle noise. We established an upper
bound on the MSE of such imaging systems, effectively capturing the MSE’s dependence on the number
of measurements, image complexity, and number of looks. Drawing inspiration from our theoretical
framework, we introduce the bagged deep image prior (Bagged-DIP) projected gradient descent (PGD)
algorithm. Through extensive experimentation, we demonstrate that our algorithm attains state-of-the-art
performance.

ACKNOWLEDGEMENTS

X.C., S.Jalali and A.M. were supported in part by ONR award no. N00014-23-1-2371. S.Jalali was
supported in part by NSF CCF-2237538. C.A.M. was supported in part by SAAB, Inc., AFOSR Young
Investigator Program Award no. FA9550-22-1-0208, and ONR award no. N00014-23-1-2752.

REFERENCES

[1] D. L. Donoho, “Compressed sensing,” IEEE Transactions on information theory, vol. 52, no. 4, pp. 1289–1306, 2006.
[2] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE signal processing magazine, vol. 25, no. 2, pp. 21–30,

2008.
[3] M. L. Moravec, J. K. Romberg, and R. G. Baraniuk, “Compressive phase retrieval,” in Wavelets XII, vol. 6701, pp. 712–722, SPIE, 2007.
[4] S. Jalali, A. Maleki, and R. G. Baraniuk, “Minimum complexity pursuit for universal compressed sensing,” vol. 60, pp. 2253–2268, Apr.

2014.
[5] P. Schniter and S. Rangan, “Compressive phase retrieval via generalized approximate message passing,” IEEE Transactions on Signal

Processing, vol. 63, no. 4, pp. 1043–1055, 2014.
[6] M. Bakhshizadeh, A. Maleki, and S. Jalali, “Using black-box compression algorithms for phase retrieval,” IEEE Transactions on

Information Theory, vol. 66, no. 12, pp. 7978–8001, 2020.
[7] F. Argenti, A. Lapini, T. Bianchi, and L. Alparone, “A tutorial on speckle reduction in synthetic aperture radar images,” IEEE Geoscience

and remote sensing magazine, vol. 1, no. 3, pp. 6–35, 2013.
[8] T. Bate, D. O’Keefe, M. F. Spencer, and C. J. Pellizzari, “Experimental validation of model-based digital holographic imaging using

multi-shot data,” in Unconventional Imaging and Adaptive Optics 2022, vol. 12239, pp. 83–94, SPIE, 2022.
[9] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 9446–9454, 2018.

24

[10] R. Heckel and P. Hand, “Deep decoder: Concise image representations from untrained non-convolutional networks,” in International
Conference on Learning Representations, 2018.

[11] W. Zhou, S. Jalali, and A. Maleki, “Compressed sensing in the presence of speckle noise,” IEEE Transactions on Information Theory,
vol. 68, no. 10, pp. 6964–6980, 2022.

[12] C. L. Lawson and R. J. Hanson, Solving least squares problems. SIAM, 1995.
[13] R. Heckel and M. Soltanolkotabi, “Denoising and regularization via exploiting the structural bias of convolutional generators,” in

International Conference on Learning Representations, 2019.
[14] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, pp. 123–140, 1996.
[15] G. Schulz, “Iterative berechung der reziproken matrix,” ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte

Mathematik und Mechanik, vol. 13, no. 1, pp. 57–59, 1933.
[16] J. S. Lim and H. Nawab, “Techniques for speckle noise removal,” in Applications of speckle phenomena, vol. 243, pp. 35–45, SPIE,

1980.
[17] L. Gagnon and A. Jouan, “Speckle filtering of sar images: a comparative study between complex-wavelet-based and standard filters,” in

Wavelet Applications in Signal and Image Processing V, vol. 3169, pp. 80–91, SPIE, 1997.
[18] Y. Tounsi, M. Kumar, A. Nassim, F. Mendoza-Santoyo, and O. Matoba, “Speckle denoising by variant nonlocal means methods,” Applied

optics, vol. 58, no. 26, pp. 7110–7120, 2019.
[19] C. Tian, Y. Xu, Z. Li, W. Zuo, L. Fei, and H. Liu, “Attention-guided cnn for image denoising,” Neural Networks, vol. 124, pp. 117–129,

2020.
[20] C.-M. Fan, T.-J. Liu, and K.-H. Liu, “Sunet: swin transformer unet for image denoising,” in 2022 IEEE International Symposium on

Circuits and Systems (ISCAS), pp. 2333–2337, IEEE, 2022.
[21] C. J. Pellizzari, M. F. Spencer, and C. A. Bouman, “Phase-error estimation and image reconstruction from digital-holography data using

a bayesian framework,” JOSA A, vol. 34, no. 9, pp. 1659–1669, 2017.
[22] C. J. Pellizzari, M. F. Spencer, and C. A. Bouman, “Optically coherent image reconstruction in the presence of phase errors using

advanced-prior models,” in Long-range imaging III, vol. 10650, pp. 68–82, SPIE, 2018.
[23] C. J. Pellizzari, M. F. Spencer, and C. A. Bouman, “Coherent plug-and-play: digital holographic imaging through atmospheric turbulence

using model-based iterative reconstruction and convolutional neural networks,” IEEE Transactions on Computational Imaging, vol. 6,
pp. 1607–1621, 2020.

[24] C. J. Pellizzari, T. J. Bate, K. P. Donnelly, and M. F. Spencer, “Solving coherent-imaging inverse problems using deep neural networks:
an experimental demonstration,” in Unconventional Imaging and Adaptive Optics 2022, vol. 12239, pp. 57–65, SPIE, 2022.

[25] X. Chen, Z. Hou, C. Metzler, A. Maleki, and S. Jalali, “Multilook compressive sensing in the presence of speckle noise,” in NeurIPS
2023 Workshop on Deep Learning and Inverse Problems, 2023.

[26] G. Jagatap and C. Hegde, “Algorithmic guarantees for inverse imaging with untrained network priors,” Advances in neural information
processing systems, vol. 32, 2019.

[27] G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, and R. Willett, “Deep learning techniques for inverse problems in
imaging,” IEEE Journal on Selected Areas in Information Theory, vol. 1, no. 1, pp. 39–56, 2020.

[28] M. Z. Darestani and R. Heckel, “Accelerated mri with un-trained neural networks,” IEEE Transactions on Computational Imaging,
vol. 7, pp. 724–733, 2021.

[29] S. Ravula and A. G. Dimakis, “One-dimensional deep image prior for time series inverse problems,” in 2022 56th Asilomar Conference
on Signals, Systems, and Computers, pp. 1005–1009, IEEE, 2022.

[30] Z. Zhuang, D. Yang, F. Hofmann, D. Barmherzig, and J. Sun, “Practical phase retrieval using double deep image priors,” arXiv preprint
arXiv:2211.00799, 2022.

[31] Z. Zhuang, T. Li, H. Wang, and J. Sun, “Blind image deblurring with unknown kernel size and substantial noise,” International Journal
of Computer Vision, pp. 1–30, 2023.

[32] G. Mataev, P. Milanfar, and M. Elad, “Deepred: Deep image prior powered by red,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops, pp. 0–0, 2019.

[33] D. Van Veen, A. Jalal, M. Soltanolkotabi, E. Price, S. Vishwanath, and A. G. Dimakis, “Compressed sensing with deep image prior and
learned regularization,” arXiv preprint arXiv:1806.06438, 2018.

[34] K. Zhang, Y. Li, W. Zuo, L. Zhang, L. Van Gool, and R. Timofte, “Plug-and-play image restoration with deep denoiser prior,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 10, pp. 6360–6376, 2021.

[35] Z. Sun, F. Latorre, T. Sanchez, and V. Cevher, “A plug-and-play deep image prior,” in ICASSP 2021-2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 8103–8107, IEEE, 2021.

[36] T. Li, H. Wang, Z. Zhuang, and J. Sun, “Deep random projector: Accelerated deep image prior,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 18176–18185, 2023.

[37] M. A. Davenport, M. F. Duarte, Y. C. Eldar, and G. Kutyniok, “Introduction to compressed sensing.,” 2012.
[38] A. Bora, A. Jalal, E. Price, and A. G. Dimakis, “Compressed sensing using generative models,” in International conference on machine

learning, pp. 537–546, PMLR, 2017.
[39] P. Peng, S. Jalali, and X. Yuan, “Solving inverse problems via auto-encoders,” IEEE Journal on Selected Areas in Information Theory,

vol. 1, no. 1, pp. 312–323, 2020.
[40] B. Joshi, X. Li, Y. Plan, and O. Yilmaz, “Plugin-cs: A simple algorithm for compressive sensing with generative prior,” in NeurIPS

2021 Workshop on Deep Learning and Inverse Problems, 2021.
[41] T. V. Nguyen, G. Jagatap, and C. Hegde, “Provable compressed sensing with generative priors via langevin dynamics,” IEEE Transactions

on Information Theory, vol. 68, no. 11, pp. 7410–7422, 2022.
[42] R. Malekian and A. Maleki, “Is speckle noise more challenging to mitigate than additive noise?,” arXiv preprint arXiv:2409.16585,

2024.

25

[43] W. Zhou, S. Jalali, and A. Maleki, “Correction to” compressed sensing in the presence of speckle noise”,” IEEE Transactions on
Information Theory, 2024.

[44] P. J. Bickel, Y. Ritov, and A. B. Tsybakov, “Simultaneous analysis of lasso and dantzig selector,” 2009.
[45] E. J. Candes and M. A. Davenport, “How well can we estimate a sparse vector?,” Applied and Computational Harmonic Analysis,

vol. 34, no. 2, pp. 317–323, 2013.
[46] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory to algorithms. Cambridge university press, 2014.
[47] J. B. Conway, A course in functional analysis, vol. 96. Springer, 2019.
[48] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
[49] R. M. Gower and P. Richtárik, “Randomized quasi-newton updates are linearly convergent matrix inversion algorithms,” SIAM Journal

on Matrix Analysis and Applications, vol. 38, no. 4, pp. 1380–1409, 2017.
[50] A. Stotsky, “Convergence rate improvement of richardson and newton-schulz iterations,” arXiv preprint arXiv:2008.11480, 2020.
[51] K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, and A. Ashok, “Reconnet: Non-iterative reconstruction of images from compressively

sensed measurements,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 449–458, 2016.
[52] M. Rudelson and R. Vershynin, “Non-asymptotic theory of random matrices: extreme singular values,” in Proceedings of the International

Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures,
pp. 1576–1602, World Scientific, 2010.

[53] S. Jalali, A. Maleki, and R. G. Baraniuk, “Minimum complexity pursuit for universal compressed sensing,” IEEE Transactions on
Information Theory, vol. 60, no. 4, pp. 2253–2268, 2014.

[54] V. De la Pena and E. Giné, Decoupling: from dependence to independence. Springer Science & Business Media, 2012.

26

APPENDIX

A. Caculation of the likelihood function
The aim of this section is to derive the loglikelihood for our model,

yℓ = AXwℓ + zℓ, for ℓ = 1, . . . , L,

where w1,w2, . . . ,wL, and z1, z2, . . . ,zL are independent and identically distributed CN (0, σ2
wIn) and

CN (0, σ2
zIp) respectively. Since the noises are indepednet across the looks, we can write the loglikelihood

for one of the looks, and then add the loglikelihoods to obtain the likelihood for all the looks. For notational
simplicity, we write the measurements of one of the looks as:

y = AXw + z

Note that y is a linear combination of two Gaussian random vectors and is hence Gaussian. Hence, by
writing the real and imaginary parts of y seperately we will have

ℜ(y) + ℑ(y) = (ℜ(AX) + iℑ(AX))(w(1) + iw(2)) + (z(1) + iz(2)),

and defining

ỹ ≜

[
ℜ(y)
ℑ(y)

]
∼ N

([
0
0

]
, B

)
,

where

B =

[
σ2
zIn + σ2

wℜ(AX2Ā⊤) −σ2
wℑ(AX2Ā⊤)

σ2
wℑ(AX2Ā⊤) σ2

zIn + σ2
wℜ(AX2Ā⊤)

]
.

Hence, the log-likelihood of our data y as a function of x is

ℓ(x) =− 1

2
log det (B)− 1

2

[
ℜ(y⊤) ℑ(y⊤)

]
(B)−1

[
ℜ(y)
ℑ(y)

]
+ C. (71)

Note that equation (71) is for a single look. Hence the loglikelihood of y1,y2, . . . ,yL as a function of
x is:

ℓ(x) = −L

2
log det(B)− 1

2

L∑
ℓ=1

ỹ⊤ℓ B
−1ỹℓ + C, (72)

Since we would like to maximize ℓ(x) as a function of x, for notational simplicty we define the cost
function fL(x) : Rn → R:

fL(x) = log det(B) +
1

L

L∑
ℓ=1

ỹ⊤ℓ B
−1ỹℓ, (73)

that we will minimize to obtain the maximum likelihood estimate.

27

B. Calculation of the gradient of the likelihood function
As discussed in the main text, to execute the projected gradient descent, it is necessary to compute the

gradient of the negative log-likelihood function ∂fL. The derivatives of fL with respect to each element
xj of x is given by:

∂fL
∂xj

=2xjσ
2
w

([
ℜ(a⊤·,j) ℑ(a⊤·,j)

]
B−1

[
ℜ(a·,j)
ℑ(a·,j)

]
+
[
−ℑ(a⊤·,j) ℜ(a⊤·,j)

]
B−1

[
−ℑ(a·,j)
ℜ(a·,j)

])
− 2xjσ

2
w

L

L∑
ℓ=1

[([
ℜ(a⊤·,j) ℑ(a⊤·,j)

]
B−1

[
ℜ(yℓ)
ℑ(yℓ)

])2

+

([
−ℑ(a⊤·,j) ℜ(a⊤·,j)

]
B−1

[
ℜ(yℓ)
ℑ(yℓ)

])2
]

=2xjσ
2
w

(
ã+T
·,j B

−1ã+
·,j + ã−T·,j B

−1ã−·,j
)
− 2xjσ

2
w

L

L∑
ℓ=1

[(
ã+T
·,j B

−1ỹℓ
)2

+
(
ã−T·,j B

−1ỹℓ
)2]

, (74)

where a·,j denotes the j-th column of matrix A, ã+
·,j =

[
ℜ(a·,j)
ℑ(a·,j)

]
and ã−·,j =

[
−ℑ(a·,j)
ℜ(a·,j)

]
.

C. More simplification of the gradient
The special form of the matrix B enables us to do the calculations more efficiently. To see this point,

define:

U + iV ≜
(
σ2
zIn + σ2

wAX
2Ā⊤

)−1
,

where U, V ∈ Rm×m. These two matrices should satisfy:(
σ2
zIn + σ2

wℜ(AX2Ā⊤)
)
U − σ2

wℑ(AX2Ā⊤)V = In

σ2
wℑ(AX2Ā⊤)U +

(
σ2
zIn + σ2

wℜ(AX2Ā⊤)
)
V = 0.

These two equations imply that:

B−1 =

[
U −V
V U

]
. (75)

This simple observation, enables us to reduce the number of multiplications required for the Newton-
Schulz algorithm. More specifically, instead of requiring to multiply two 2m× 2m matrices, we can do 4
multiplications of m×m matrices. This helps us have a factor of 2 reduction in the cost of matrix-matrix
multiplication in our Newton-Schulz algorithm.

In cases the exact inverse calculation is required, again this property enables us to reduce the inversion
of matrix B ∈ R2m×2m to the inversion of two m×m matrices (albeit a few m×m matrix multiplications
are required as well).

Plugging (75) into (74), we obtain a simplified form for the gradient of fL(x):

∂fL
∂xj

=4xjσ
2
wℜ
(
ā⊤·,j(U + iV)a·,j

)
− 2xjσ

2
w

L

L∑
ℓ=1

[
ℜ2
(
ā⊤·,j(U + iV)yℓ

)
+ ℑ2

(
ā⊤·,j(U + iV)yℓ

)]
=4xjσ

2
wℜ
(
ā⊤·,j(U + iV)a·,j

)
− 2xjσ

2
w

L

L∑
ℓ=1

∥∥ā⊤·,j(U + iV)yℓ
∥∥2
2
. (76)

Algorithm 1 shows a detailed version of the final algorithm we execute for recovering images from their
multilook, speckle-corrupted, undersampled measurements. In one of the steps of the algorithm, we ensure
that all the pixel values of our estimate are within the range [0, 1]. This is because we have assumed that
the image pixels take values within [0, 1].

28

Algorithm 1 Projected gradient descent algorithm
Input: {yl}Ll=1, A,x0 = 1

L

∑L
l=1 |A⊤yl|, gθ(·, δx).

Output: Reconstructed x̂.
for t = 1, . . . , T do

[Gradient Descent Step]
if t = 1 or ∥xt − xt−1∥∞ > δx then

Calculate exact B−1
t = (AX2

t A
⊤)−1.

else
[Newton-Schulz matrix inverse approximation]
M0 = B−1

t−1,
for k = 1, . . . , K do

Mk =Mk−1 +Mk−1(Im −BtMk−1),
end for
B̃−1

t =MK .
end if
Gradient calculation at coordinate j as ∇fL(xt−1,j) using B−1

t or B̃−1
t , and update xG

t,j : xG
t,j ← xt−1,j − µt∇fL(xt−1,j).

Save matrix inverse B−1
t or B̃−1

t .
Truncate xG

t into range (0, 1), xG
t = clip(xG

t , 0, 1).
[Bagged-DIPs Projection Step]
Generate random image given randomly generated noise u ∼ N (0, 1) as gθ(u).
Update θt by optimizing over ∥gθ(u)− xG

t ∥22 till converges: θ̂t ← argminθ ∥gθ(u)− xG
t ∥22.

Generate xP
t using trained g

θ̂t
(·) as xP

t ← g
θ̂t
(u).

Obtain xt = xP
t .

end for
Reconstruct image as x̂ = xT .

The only remaining parts of the algorithm we need to clarify are (1) our hyperparameter choices and
(2) the implementation details of the Bagged-DIP module. As described in the main text, in each (outer)
iteration of PGD, we learn three DIPs and then take the average of their outputs. Let us now consider one
of these DIPs that is applied to one of the hk × wk patches.

Inspired by the deep decoder paper [10], we construct our neural network using four blocks: we call
the first three blocks DIP-blocks and the last one output block. The structures of the blocks are shown in
Figure 4. As is clear from the figure, each DIP block is composed of the following components:
• Up sample: This unit increases the height and width of the datacube that receives by a factor of 2.

To interpolate the missing elements, it uses the simple bilinear interpolation. Hence, if the size of the
image is 128× 128, then the height and width of the input to DIP-block3 will be 64× 64, the input
of DIP-Block2 will be 32× 32, and so on.

• ReLU: this module is quite standard and does not require further explanation.
• Convolution: For all our simulations, we have either used 1×1 or 3×3 convolutions. Additionally, we

provide details on the number of channels for the data cubes entering each block in our simulations.
The channel numbers are [128, 128, 128, 128] for the four blocks.

The output block is simpler than the other three blocks. It only has a 2D convolution that uses the same
size as the convolutions of the other DIP blocks. The nonlinearity used here is a sigmoid function, as we
assume that the pixel values are between [0, 1].

Finally, we should mention that each element of the input noise u of DIP (as described before DIP
function is gθ(u)) is generated independently from Normal distribution N (0, 1).

DIP Block-1

2D
Conv

Kernel 3
ReLU

Up-
Sample
Scale 2

DIP Block-2

2D
Conv

Kernel 3
ReLU

Up-
Sample
Scale 2

DIP Block-3

2D
Conv

Kernel 3
ReLU

Up-
Sample
Scale 2

Output Block

2D
Conv

Kernel 3
Sigmoid

Fig. 4. The structure of DIP and Output Blocks.

29

TABLE III
NUMBER OF ITERATIONS USED IN TRAINING BAGGED-DIPS FOR DIFFERENT ESTIMATES.

Patch size Barbara Peppers House Foreman Boats Parrots Cameraman Monarch

128 400 400 400 400 400 800 4000 800
64 300 300 300 300 300 600 2000 600
32 200 200 200 200 200 400 1000 400

The other hyperparameters that are used in the DIP-based PGD algorithm are set in the following way:
The learning rate of the loglikelihood gradient descent step (in PGD) is set to µ = 0.01. For training the
Bagged-DIPs, we use Adam [48] with the learning rate set to 0.001 and weight decay set to 0. The number
of iterations used for training Bagged-DIPs for different estimates on images are mentioned in Table III. We
run the outer loop (gradient descent of likelihood) for 100, 200, 300 iterations when m/n = 0.5, 0.25, 0.125
respectively. For “Cameraman” only, when m/n = 0.125, since the convergence rate is slow, we run 800
outer iterations.

The Newton-Schulz algorithm, utilized for approximating the inverse of the matrix Bt, has a quadratic
convergence when the maximum singular value σmax(I −M0Bt) < 1. Hence, ideally, if this condition
does not hold, we do not want to use the Newton-Schulz algorithm and may prefer the exact inversion.
Unfortunately, checking the condition σmax(I −M0Bt) < 1 is also computationally demanding. However,
the special form of Bt enables us to have an easier heuristic evaluation of this condition.

For our problems, we establish an empirical sufficient condition for convergence: ∥xt − xt−1∥∞ < δx,
where δx is a predetermined constant. To determine the most robust value for δx, we conducted simple
experiments. We set n = 128× 128 and m/n = 0.5. The sensing matrix A is generated as described in
the main part of the paper (see Section V-B). Each element of xo is independently drawn from a uniform
distribution U [0.001, 1]. Furthermore, each element of ∆xo is independently sampled from a two-point
distribution. In this distribution, the probability of the variable X being δx is equal to the probability of
X being −δx, both with a probability of 0.5, ensuring ∥∆xo∥∞ = δx. We define B as A(X +∆Xo)

2Ā⊤,
and M0 as (AX2Ā⊤)−1. We then assess the convergence of the Newton-Schulz algorithm for calculating
B−1. For various values of δx, we ran the simulation 100 times each, recording the convergence success
rate. As indicated in Table IV, the algorithm demonstrates instability when δx ≥ 0.13. Consequently, we
set δx to 0.12 in all our simulations to ensure the reliable convergence of the Newton-Schulz algorithm.

TABLE IV
CONVERGENCE SUCCESS RATE UNDER VARYING THRESHOLD δx .

Threshold δx Convergence Success Rate

0.10 100%
0.11 100%
0.12 100%
0.13 38%
0.14 0%
0.15 0%

	I Introduction
	II Related Work
	III Main Theoretical Result
	III-A Assumptions and their justifications
	III-B Main theorem and its implications
	III-C Key steps in the proof of Theorem ??
	III-D Details of the proof of Theorem ??

	IV Main Algorithmic Contributions
	IV-A Summary of Projected Gradient Descent and DIP
	IV-B Challenges of DIP-based PGD
	IV-B1 Challenge 1: Right choice of DIP
	IV-B2 Solution to Challenge 1: Bagged-DIP
	IV-B3 Challenge 2: Matrix inversion
	IV-B4 Solution to Challenge 2

	V Simulation Results
	V-A Study of the Impacts of Different Modules
	V-A1 Newton-Schulz iterations
	V-A2 Bagged-DIP
	V-A3 Simple architectures versus Bagged-DIPs

	V-B Performance of Bagged-DIP-based PGD

	VI Technical results
	VII Conclusion
	References
	Appendix
	A Caculation of the likelihood function
	B Calculation of the gradient of the likelihood function
	C More simplification of the gradient

