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Abstract

Unlike conventional imaging modalities, such as magnetic resonance imaging, which are often
well described by a linear regression framework, coherent imaging systems follow a significantly
more complex model. In these systems, the task is to estimate the unknown image xo ∈ Rn

from observations y1, . . . ,yL ∈ Rm of the form

yl = AlXowl + zl, l = 1, . . . , L,

where Xo = diag(xo) is an n × n diagonal matrix, w1, . . . ,wL
i.i.d.∼ N (0, In) represent speckle

noise, and z1, . . . ,zL
i.i.d.∼ N (0, σ2

zIm) denote additive noise. The matrices A1, . . . , AL are known
forward operators determined by the imaging system.

The fundamental limits of conventional imaging systems have been extensively studied
through sparse linear regression models. However, the limits of coherent imaging systems re-
main largely unexplored. Our goal is to close this gap by characterizing the minimax risk of
estimating xo in high-dimensional settings.

Motivated by insights from sparse regression, we observe that the structure of xo plays
a crucial role in determining the estimation error. In this work, we adopt a general notion
of structure based on the covering numbers, which is more appropriate for coherent imaging
systems. We show that the minimax mean squared error (MSE) scales as

max{σ4
z , m

2, n2} k logn
m2nL

,

where k is a parameter that quantifies the effective complexity of the class of images.

1 Introduction

1.1 Motivation and main objective

Coherent imaging technology, which uses coherent light sources such as lasers to illuminate the
object of interest, underpins many modern imaging systems. Examples include Optical Coher-
ence Tomography (OCT) Schmitt et al. (1999), ultrasound imaging Achim et al. (2001), Synthetic
Aperture Radar (SAR) Lopez-Martinez and Fabregas (2003); Dasari et al. (2015), digital holog-
raphy Bianco et al. (2018), and near-infrared spectroscopy (NIRS) Ortega-Martinez et al. (2019).
Compared to other imaging modalities, coherent imaging systems are affected by a complex form
of distortion known as speckle noise Racine et al. (1999).
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The general mathematical problem that arises in coherent imaging systems is to estimate a
signal or image xo ∈ Rn

+ from measurements y of the form

y = AXow + z, (1.1)

where Xo ∈ Rn×n is a diagonal matrix whose diagonal elements are the same as xo, w ∈ Rn,
and z ∈ Rm represent the speckle and additive noises, respectively. In this model, A ∈ Rm×n

is a known matrix, called the forward operator of the imaging system. Note that, compared to
linear regression problems, which are popular for other types of imaging such as MRI and CT, the
relationship between y and xo is further distorted by the speckle noise w. In many applications,
the speckle noise is “fully developed,” which means that the elements of w are i.i.d. N(0, 1). A
standard model for the additive noise z is also that it has i.i.d. N(0, σ2

z).
Before discussing our modeling assumptions, we first highlight an essential technique in coherent

imaging systems, namely multilook or multishot measurements. It is widely recognized in the
coherent imaging community that estimating xo from a single measurement of the form in (1.1)
is challenging, and in most applications the reconstruction quality is insufficient. Therefore, in
many settings, such as SAR and digital holography De Vries (1998); Argenti et al. (2013); Bate
et al. (2022), multiple measurements of the same scene are acquired. More specifically, one collects
measurements y1, . . . ,yL of the form

yl = AlXowl + zl, l = 1, 2, .., L (1.2)

where L is referred to as the number of looks, and A1, . . . , AL represent the forward operators of
different shots. There are a few points that we should clarify about this multilook system:

• In practice, effort is made to ensure that w1,w2, . . . ,wL are independent of each other.
Similarly, the additive noise vectors z1, . . . ,zL are typically assumed to be independent across
measurements and also independent of w1, . . . ,wL.

• The forward models across looks may differ or be the same, depending on the technology
used. For instance, if the wavelength of the illuminating light changes, then different Ai’s will
be observed, but if phase masks are used on the path of the illuminating light, then we will
have A1 = A2 = · · · = AL.

In our mathematical model, we assume that the variance of the speckle noise is equal to 1.
This is without any loss of generality. Consider the case where the standard deviations of the
multiplicative noise and the additive noise are σw and σz, respectively. Then, by dividing the
sensor measurements yl by σw, we obtain an equivalent system of measurements:

ỹl = AXow̃l + z̃l.

Here we have defined ỹl :=
yl
σw

, w̃l :=
wl
σw

, z̃l :=
zl
σw

. As a result of this transformation, we have

w̃l ∼ N (0, I), z̃l ∼ N
(
0, σ2

z
σ2
w
I
)
,

which is consistent with (1.2). Hence, without a loss of generality, we set the variance of the speckle
noise to 1 and discuss the changes in σz.

Despite the widespread use of coherent imaging technology across many applications, the theo-
retical aspects of the associated estimation problems remain largely unexplored. The main goal of
this paper is to help fill this gap by addressing the following questions:
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1. How do m,n,L and σ2
z affect the accuracy of the estimates of xo?

2. Is there any gain in using different A1, A2, . . . , AL compared to the case A1 = A2 = . . . = AL?

3. How do additive and multiplicative noise compare in their impact on the estimation error?

To address these questions and to provide insight into the estimation challenges that arise in
coherent imaging systems, we seek to characterize the minimax risk associated with this problem.
In particular, we aim to quantify

R2(C,m, n, σ2
z) := inf

x̂
sup
xo∈C

E

[
∥x̂− xo∥22

n

]
, (1.3)

where x̂ is any measurable estimate that has access to y1, . . . ,yL and A1, A2, . . . , AL, and C denotes
the set of all possible options for xo. Prior work in sparse linear regression and compressed sensing
shows that the minimax risk is strongly influenced by the choice of C. In the next section, we first
describe our choice of C, and then discuss our contributions and our responses to the questions we
raised above.

1.2 Notations

Throughout the paper, for the sake of clarity, all matrices of sizes m×n, m×m, and n×n (without
dependence on the number of looks L) are represented by uppercase italic letters such as Al, Σl,
and X. We use boldface uppercase letters, e.g. A,B and Σ, when the sizes of matrices depend on
L. These matrices are often constructed by stacking matrices of smaller sizes and may have sizes
such as mL× (m+ n)L and (m+ n)L× (m+ n)L. For a matrix A, σmax(A) and σmin(A) denote
the maximum and minimum singular values of A. Furthermore ∥A∥2 = σmax(A) and ∥A∥HS denote
the spectral norm and Hilbert-Schmidt norms of A, respectively. Boldface lowercase letters such
as x are used for vectors for sizes m or n (again, no dependence on L). Arrows above the vectors
emphasize that the dimensions of the vectors depend on L. Again, such vectors are constructed by
stacking L lower-dimensional vectors. For a vector x = (x1, ..., xn), we let x2 := (x21, ..., x

2
n). Given

two sequences {an}n∈N and {bn}n∈N, we say an = O(bn), or equivalently an ≪ bn, bn = Ω(an),
if there exist constants C > 0, and M > 0, such that for all n > M , |an| ≤ C|bn|. We say
an = o(bn), or equivalently bn = ω(an), if limn→∞ an/bn = 0. We write an = Θ(bn) if an = O(bn)
and bn = O(an). For a, b ∈ R, we denote (a, b]Z := {x ∈ Z : a < x ≤ b}.

1.3 Organization of the paper

In Section 2, we introduce our model, state the main assumptions, and present our primary con-
tributions. Section 3 reviews related work and compares our results with the existing literature.
In Section 4, we provide the necessary preliminaries for our analysis. The remaining sections are
devoted to the proofs of the theorems stated in Section 2.

2 Our main contributions

In this section, we first discuss our choice of the set C in (1.3), and then present our theoretical
results in response to the questions we raised in Section 2.2.
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2.1 The choice of C

Inspired by developments in the fields of sparse regression and compressed sensing, we note that
the structure of xo, plays a crucial role in determining the accuracy of the estimates. As will be
clarified later in this section, sparsity is not useful for coherent imaging systems. Hence, in this
paper we work with a more general notion of “structuredness”. This notion allows us to cover not
only the class of k-sparse vectors, but also the more modern classes developed in the field of neural
networks, such as the class of untrained networks. For a compact set C ⊂ Rn, let Nε(C) denote its
covering number under the ℓ2 metric, namely the least number of ℓ2-balls covering C..

Definition 2.1. We say that C ⊂ Rn satisfies polynomial complexity of order k if there exist
constants a > 0, b ≥ 0 independent of k and n such that

Nε(C) ≤

(
anb

ε

)k

. (2.1)

Before proceeding, we review several sets with polynomial complexity of order k to establish
the usefulness of this definition. The proof of the following results are provided in Appendix A.
Our first example can serve as a proxy for images generated by neural network architectures such
as deep image priors Ulyanov et al. (2018), implicit neural representations Sitzmann et al. (2020),
and autoencoders Bank et al. (2023). These models have been extensively used as reliable and
accurate models for images.

Example 2.2. Consider k ≪ n and let g : Rk → Rn denote a Lipschitz function with a Lipschitz
constant M . Define

C = {x ∈ Rn | x = g(θ) for some θ ∈ [0, 1]k}.

Then, Nε(C) ≤
(
2M

√
k

ϵ + 1
)k

. Note that when ϵ < 2M
√
k, we have 2M

√
k

ϵ + 1 < 3M
√
k

ϵ , and hence

we can also have Nε(C) ≤
(
3M

√
k

ϵ

)k
.

Definition 2.2 covers a wide range of examples. For instance, in the literature of neural net-
works, it has been conjectured that the output of certain neural networks, such as implicit neural
representation networks Sitzmann et al. (2020) and deep image priors Heckel and Hand (2018) can
generate all natural images as the parameters of the networks change. Note that the number of
parameters of these networks can be interpreted as k in Example 2.2. Often times the number
of parameters is much smaller than the ambient dimension of the signal that is generated by the
network. Our second example offers upper bounds for the covering numbers of k-sparse vectors.

Example 2.3. For the set C = B2(1) ∩ Sk, where Sk = {x ∈ Rn | ∥x∥0 ≤ k}, we have(1
ϵ

)k
≤ Nϵ(C) ≤

(
n

k

)(
2

ε
+ 1

)k

≤
(
2n

ε
+ n

)k

≤
(
3n

ε

)k

.

The following example is a slight generalization of the above example that can cover a wide
range of models.

Example 2.4. Let D ∈ Rn×n denote a matrix with the maximum singular value σmax(D). Suppose

that C ⊂ {Dθ | θ ∈ Sk ∩B2(0, 1)}. Then, Nε(C) ≤
(
3σmax(D)n

ϵ

)k
.
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Note that simple applications of the above result are piecewise constant and piecewise polyno-
mial functions. The following lemma, proves this claim for the class of piecewise constant vectors.

Example 2.5. Define D(1) ∈ Rn×n as a matrix whose diagonal elements are equal to 1 and the
immediate super diagonal elements are equal to −1. Suppose that for every x ∈ C, D(1)x ∈
Sk ∩B2(0, 1). Then,

Nε(C) ≤

(
3n2

ε

)k

.

Note that if x is a constant vector, meaning that all its entries have the same value, then all
elements of D(1)x except for the last one are equal to zero. Therefore, if we assume that D(1)x ∈ Sk,
it follows that x is a piecewise constant vector with at most k jumps (changes) in its values.

There are several ways to extend the above example to piecewise polynomial functions of degree
at most P . We do the following simple extension.

Example 2.6. Define D(1) ∈ Rn×n as a matrix whose diagonal elements are equal to 1 and the

immediate super diagonal elements are equal to −1. Define D(P+1) = (D(1))
P+1. Suppose that for

every x ∈ C, D(P+1)x ∈ Sk ∩B2(0, 1). Then,

Nε(C) ≤

(
3nP+2

ε

)k

.

Note that if f : [0, 1] → R is a polynomial of degree P , and xi = f(i/n), it follows from a
well-known fact in the theory of forward difference operators (see (Graham et al., 1994, Section
5.3)) that all elements of D(P+1)(x) are equal to zero, except possibly for the last P + 1 elements.
Hence, the set C in Example 2.6 can be viewed as discretized piecewise polynomial vectors.

Inspired by all the examples above, in our theoretical results we will be assuming that xo in
(1.1) is from a set C that has a polynomial complexity of order k ≪ n.

2.2 Main theoretical result for independent Ais

As we discussed before, we consider the problem of estimating xo from the observations

yl = AlXowl + zl, for l = 1, . . . , L, (2.2)

under the assumption w1,w2, . . . ,wL
i.i.d.∼ N(0, I), and zl

i.i.d.∼ N(0, σ2
zI). Our main goal is to

characterize the minimax risk of the estimation problem in (2.2) defined as:

R2(C,m, n, σz) := inf
x̂

sup
xo∈C

E

[
∥x̂− xo∥22

n

]
. (2.3)

Our first theorem obtains an upper bound for this quantity: Let Fa,b,k,n denote all subsets of

[xmin, xmax]
n whose ε-covering number is upper bounded by

(
anb

ε

)k
.

Theorem 2.7. Suppose that A1, ..., AL are independent m × n matrices and have i.i.d. N(0, 1)
entries. Suppose that xo ∈ Ck ∈ Fa,b,k,n. If mL ≤ n4k log n, then

R2(Ck,m, n, σz) = Oxmax,xmin,a,b

min

(
max(σ4

z ,m
2, n2)k log n

m2nL
, 1

) . (2.4)
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The above theorem obtains an upper bound for the minimax risk that holds for any Ck ⊂
[xmin, xmax]

n that satisfies polynomial complexity of order k. Before discussing the assumptions
made in the above theorem, let us discuss the sharpness of this upper bound.

Theorem 2.8. Suppose a ≥ xmax − xmin and b ≥ 1. If logm = Θ(logn), logL = O(log n), and
there exists ε ∈ (0, 1/2) such that k ≤ n1−2ε, and that max(σ4

z ,m
2, n2)k log n ≤ m2n1−εL, then we

have

sup
C∈Fa,b,k,n

R2(C,m, n, σz) = Ωε,xmax,xmin

(
max(σ4

z ,m
2, n2)k log n

m2nL

)
. (2.5)

Remark 2.9. One can easily extend Definition 2.8 to any a, b > 0. We shall provide rationale in
Section B.

Before we discuss the implications of our result, we discuss some of the assumptions we have
made in the above theorems. A natural question is why we did not adopt the standard notion of
sparsity widely used in sparse regression and imaging systems that fit well within the framework
of linear regression. We mention two reasons below:

1. In imaging sciences, it is often the case that the vector x is not sparse itself. In fact, some
linear transformation of the vector, e.g. wavelet or Fourier transform of x is sparse Donoho
et al. (1995); Donoho and Johnstone (1998a). Suppose that x = Fu, where ∥u∥0 ≤ k. Then,
in linear regression, one can write the measurement y = Ax + z as y = Ãu + z, where
Ã = AF . Hence, the problem of imaging when linear model is accurate, is equivalent to the
problem of sparse linear regression. As is clear, because of the nature of the speckle noise, we
cannot transform the estimation of x from the observation y1,y2, . . . ,yL to an estimation
of a sparse vector (with a different design matrix).

2. Because of the nature of speckle noise (that is multiplied by x), the estimation of sparse
signals are easier than the estimation of the non-sparse signals. Intuitively speaking, this is
due to the fact that sparse vectors, automatically remove most of the speckle noises. In other
words, out of the n-speckle noise elements that are often present in these systems, n − k of
them will be multiplied by zeros during the measurement process and will not have a major
impact on the estimation problem. To confirm this intuition rigorously, the next theorem
shows that the minimax risk of estimating sparse vectors from (2.2) is much smaller than the
bounds presented in Theorems 2.7 and 2.8.

Let

Sbdd
k :=

{
x ∈ Rn : ∥x∥0 ≤ k, xi = 0 or 0 < xmin ≤ xi ≤ xmax

}
. (2.6)

Theorem 2.10. If k log(en/k) ≤ m, then there exist constants cxmax,xmin , Cxmax,xmin only depending
on xmax and xmin such that

cxmax,xmin

k

nL
≤ R2(Sbdd

k ,m, n, k, L, σz) ≤ Cxmax,xmin

(
k

nL
+

σ2
zk log(n/k)

mn

)
(2.7)

In particular, if σ2
zL log(n/k) ≤ m, the upper and lower bounds have the same order k

nL .
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The proof of this result can be found in Section G. By comparing Theorem 2.10 with Theorems
2.7 and 2.8, it is straightforward to see that estimating k-sparse signals can be much easier than
estimating other types of signals that satisfy polynomial growth of order k that includes for instance,
the signals that are sparse in an orthonormal basis such as wavelet (see definition 2.4).

The remaining assumptions of Theorems 2.7 and 2.8 are only technical and relatively minor;
they could likely be removed, though doing so would make the proof less transparent. We discuss
these assumptions briefly below:

1. mL ≤ n4k log n: This assumption has appeared in Theorem 2.7. In practice, obtaining more
than L > 100 independent looks is rarely feasible. Since in most imaging applications n is on
the order of hundreds of thousands to millions, this condition is typically satisfied.

2. log(L) = O(logn): This assumption appears in Definition 2.8. As we discussed before, in all
applications, L is much smaller than n. Hence, the assumption that L is not growing too fast
in terms of n is a natural assumption in practice.

3. logm = Θ(log n): As will be discussed in the proof of definition 2.8 and might be even clear
from the formulation of the problem, increasing m beyond n does not help in removing the
speckle noise, and it only helps in removing the additive part of the noise. Hence, increasing
m to a very large number is not particularly helpful in reducing the risk, since unless the
additive noise is too large, the errors induced by the speckle noise are the dominant part
of the risk. Note that increasing m in imaging applications is equivalent to increasing the
number of sensors which is costly. As a result, there is no reason to increase m much beyond
n in real-world applications, and again the assumption logm = Θ(logn) is a mild assumption.

4. k ≤ n1−2ε: This assumption is used in definition 2.8. It is always the case that k ≪ n. Hence,
again this is a mild assumption. However, at this stage it is unclear, whether this assumption
is necessary or it can be weakened.

2.3 Interpretation of Theorems 2.7 and 2.8

We discuss Theorems 2.7 and 2.8 in a few remarks below.

Remark 2.11 (Difference of upper and lower bounds). Theorem 2.7 holds for any set C that
satisfies polynomial complexity of order k. In contrast, the lower bound is obtained by taking the
supremum of the minimax risk over all sets that satisfy polynomial complexity of order k. As
Theorem 2.10 illustrates, due to the nature of the speckle noise, which is multiplied by the entries
of xo, the estimation problem is easier for sparse vectors. Nevertheless, the supremum in the lower
bound demonstrates that for certain sets C that satisfy polynomial complexity of order k, the upper
bound established in Theorem 2.7 is in fact sharp.

Depending on the relative value of m,n, σz, the minimax risk can be obtained from one of the
following formulas:

R2(Ck,m, n, σz) =


Oxmax,xmin

(
kn logn
m2L

)
, if n ≥ max(m,σ2

z);

Oxmax,xmin

(
k logn
nL

)
, if m ≥ max(n, σ2

z);

Oxmax,xmin

(
σ4
zk logn
m2L

)
, if σ2

z ≥ max(m,n).

(2.8)
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In what follows, we offer some intuition to explain these bounds.

Remark 2.12 (When does the multiplicative noise dominate the additive noise?). Suppose that σ2
z

is much smaller than max(m,n). In this case, the minimax risk is unaffected by the additive noise.
To understand this phenomenon, suppose that we are working in the setting m < n. If we consider
the model, y = AXow + z, let yi denote, the ith element of y, then we have yi = aTi Xow + zi. In
this measurement, the variance of var(aTi Xow) is

∑n
i=1 x

2
i = Θ(n), and var(zi) = σ2

z . Hence, when
σ2
z = o(n), one would expect the additive noise to be negligible. However, this heuristic does not

explain why the additive noise does not matter when m > n and n ≪ σz ≪ m. Again to provide
some intuition on the impact of m, when m > n. Note that in this case, since ATA is an invertible
matrix, we can calculate: ỹ = (ATA)−1y = Xw + z̃, where z̃ ∼ N(0, σ2

z(A
TA)−1). While the

additive noise z̃ is colored, and discussing signal-to-noise ratio on the individual elements does not
necessarily provide an accurate information, note that in ỹi we have var(xiwi) = Θ(1), and we can
prove that var(z̃i) = Θ(σ2

z/m) (See for instance definition 4.9 for the eigenvalues of A). Hence, in
this case, again we can see that when σ2

z ≪ m, the additive noise becomes negligible.

Remark 2.13 (Comparison with linear imaging systems ). Again, consider the case σ2
z ≤ max(m,n).

In the classical regimes where the sparse linear regression problem is studied (e.g., Bickel et al.
(2009)), namely k ≪ m ≪ n, the minimax risk of coherent imaging systems reduces to

kn log n

m2L
.

If L is not too large, achieving a small risk requires m ≫
√
n. This contrasts sharply with imaging

systems based on linear regression, where obtaining a small minimax risk typically requires only
m ≫ k logn. This is consistent with the general belief in the coherent imaging community that
recovering images from measurements in coherent imaging systems is much more challenging than
in imaging systems based on linear models.

2.4 Fixed A model

In Section 2.2, we considered the setting in which the forward models Ais across looks are inde-
pendent. However, as we discussed before, in some multilook systems the forward models do not
change across looks and we have

A1 = A2 = . . . = AL.

The main question that we would like to address in this section is whether either of these two
multilook systems have an advantage over each other. To respond to this question, we aim to study
the minimax estimation rate under the setting A1 = A2 = . . . = AL and compare it with the result
of Section 2.2. We define the minimax risk for this setting similar to what we defined before for
the vase of different forward models.

R†
2(C,m, n, σz) = inf

x̂
sup
xo∈C

E

[
∥x̂− xo∥22

n

]
. (2.9)

Theorem 2.14. Suppose that A1 = A2 = . . . = AL = A ∈ Rm×n and that Aij
i.i.d.∼ N(0, 1).

Furthermore, assume that xo ∈ Ck ∈ Fa,b,k,n. Furthermore, assume mL ≤ n4k log n. Then,

R†
2(Ck,m, n, σz) =Oxmax,xmin

min

(
max(σ4

z ,m
2, n2)k log n

m2nL
+

k logm log n

m2
, 1

) . (2.10)
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In particular, if max(σ4
z ,m

2, n2) ≥ nL logm, then

R†
2(Ck,m, n, σz) =Oxmax,xmin

min

(
max(σ4

z ,m
2, n2)k log n

m2nL
, 1

) . (2.11)

Similar to Section 2.2, the above theorem obtains an upper bound for the minimax risk that
holds for any C ⊂ [xmin, xmax]

n that satisfies polynomial complexity of order k. Before discussing
the implications of the above result, let us discuss the sharpness of this upper bound.

Theorem 2.15. Suppose that the following holds: (i) a ≥ xmax−xmin, b ≥ 1, logm = Θ(logn), logL =
O(logn), (ii) there exists ε ∈ (0, 1/2) such that k ≤ n1−2ε, and (iii) max(σ4

z ,m
2, n2)k log n ≤

m2n1−εL. Then we have

sup
C∈Fa,b,k,n

R†
2(C,m, n, σz) =Ωε,xmax,xmin

(
max(σ4

z ,m
2, n2)k log n

m2nL

)
. (2.12)

Since the assumptions in the above two theorems are similar to the ones in Theorems 2.7 and
2.8 we will not discuss the assumptions again. However, there is one condition that we did not
discuss before. This condition appears in the second part of Theorem 2.14 and indicates that if
max(σ4

z ,m
2, n2) ≥ nL logm, then

R†
2(C,m, n, σz) =Oxmax,xmin

min

(
max(σ4

z ,m
2, n2)k log n

m2nL
, 1

) . (2.13)

Note that the upper bound in Definition 2.14 matches the lower bound in Definition 2.15. Hence,
this leads to two questions:

1. How strong is the assumption max(σ4
z ,m

2, n2) ≥ nL logm?

2. Is there any intuition why k logm logn
m2 appears in Definition 2.14 while it does not appear in

Theorem 2.13?

In response to the first question above, let us assume that max(σ4
z ,m

2, n2) = n2. Then, the
condition max(σ4

z ,m
2, n2) ≥ nL logm simplifies to n ≥ L logm. In practice, n ≫ logm and L is

often a number between 2 to 100, and the condition holds. A similar argument shows that even
when m > n, the condition is often satisfied.

Regarding the second question raised above, the necessity of k logm logn
m2 is still unclear. However,

some intuitive arguments shed some light on the difference between the fixed-A and varying-A cases.
Suppose that the additive noise in (2.2) is zero. In the fixed design setting, it is straightforward
to show that the statistics 1

L

∑L
i=1 ylyl

T is a sufficient statistics for Xo. if we fix m,n and let
L → ∞, the sufficient statistics converges to AX2

oA
T in probability. In other words, the sufficient

statistics converges to a linear transformation of X2
o . However, note that recovering the exact X2

o

from AX2
oA

T is not possible. In fact, in the most optimistic setting AX2
0A

T offers m(m + 1)/2
linearly independent observations of X2

o . Hence, if m(m + 1)/2 < k, we cannot recover the exact
X2

o from AX2
oA

T . Note that when k > m2, the term k logm logn
m2 is quite large. Hence, this term is

consistent with the intuition that when k ≥ m2 the error has to be large.

9



2.5 Fixed forward model or varying forward model?

By comparing the results of Sections 2.2 and 2.4, we observe that, in terms of minimax rates,
there is no significant difference between fixed and varying forward models with respect to esti-
mation accuracy. The upper bound that we have derived for the the fixed-A model, has an extra
k logm logn

m2 . However, this extra term is quite small for most practical settings and does not seem
to be important.

3 Related works

In this paper, we make the first attempt to establish the rate of the minimax risk for coherent
imaging systems.

There is a substantial body of research on the theoretical characterization of the minimax
risk for other imaging systems, such as MRI and CT, which are modeled by linear regression
problems Tsybakov (1986); Korostelev and Tsybakov (1993); Donoho and Johnstone (1994b); Bickel
et al. (2009); Raskutti et al. (2011); Candès and Su (2015); Su et al. (2017); Weng et al. (2016);
Donoho et al. (2009); Metzler et al. (2016); Guo et al. (2024); Ghosh et al. (2025), as well as
crystallography and astrophotography, which are modeled by the phase retrieval problem Chen et al.
(2019); Chen and Candès (2017); Candes et al. (2015); Zhang et al. (2017, 2016); Cai et al. (2016);
Hand et al. (2018); Zhang et al. (2017); Ma et al. (2019); Bakhshizadeh et al. (2020). However, due
to the presence of multiplicative noise, our proof strategies and resulting characterizations differ
significantly. For example, as discussed in Sections 2.1 and 2.2, the sparsity assumption that is
central to much of the theoretical work on these other imaging systems is not particularly useful
for analyzing coherent imaging systems. Consequently, we were required to consider a broader
class of signals, i.e., those that have polynomial complexity of order k. Moreover, because of the
fundamental differences in the underlying mathematical models, both our proof strategies and the
analytical tools we employ are considerably different from those commonly used in the literature
on sparse linear regression and sparse phase retrieval. For instance, the standard strategy in
sparse linear regression is to assume some condition on matrix A (called the forward operator of
the imaging system) such as restricted isometry property Candes and Tao (2005), compatibility
condition van de Geer and Bühlmann (2009), restricted eigenvalue (RE) condition Bickel et al.
(2009), and strong restricted eigenvalue (SRE) condition Bellec et al. (2018), and later confirm
them on a given random matrix ensemble. As is clear, since we do not have the assumption of
sparsity and the speckle noises are multiplied by the elements of vectors such conditions are not
useful in our proofs.

The theoretical properties of coherent imaging systems have only recently been explored in a
few papers by subsets of the authors and their collaborators Zhou et al. (2022); Chen et al. (2024,
2025); Malekian et al. (2025). We discuss the contributions of these papers, and compare our
contributions with what are offered in those papers:

1. Speckle noise in nonparametric settings: In Malekian et al. (2025) the authors study the
speckle noise under the nonparametric settings. More specifically, they consider the model:

yi = f(xi)ξi + τi, i = 1, 2, . . . , n. (3.1)

where ξi’s are i.i.d. N (0, 1) and τi’s are i.i.d. N (0, σ2
τ ) random variables, xi = i/n, i =

1, 2, ..., n are fixed design points, and unknown f is a smooth function assumed to be in a

10



Holder class S . Then, the authors characterized the minimax risk:

R2(S , στ ) := inf
f̂

sup
f∈S

Ef∥f − f̂∥22, (3.2)

where S denotes a Holder class of function. Note that this problem reduces to the standard
problem of nonparametric regression when ξi is equal to 1, on which a large body of work
exists in the literature. Tsybakov (1986); Korostelev and Tsybakov (1993); Arias-Castro et al.
(2012); Maleki et al. (2012, 2013); Kerkyacharian and Picard (1992); Donoho and Johnstone
(1998b); Donoho (1999); DeVore et al. (2025).

Compared to our paper, we should emphasize that Malekian et al. (2025) has assumed that
the forward operator A is given by I. As expected, many complications in our derivations arise
because of existence the forward operator in our model. Hence, we need completely different
techniques (and different algorithms for obtaining upper bounds) from the ones presented in
Malekian et al. (2025).

2. Fixed forward models: The authors of Zhou et al. (2022); Chen et al. (2024, 2025) have
studied a problem similar to the one presented in Section 2.4. However, there are several
major differences between their work and ours.

(a) None of these three papers establish lower bounds for the minimax risk. As will be
clarified later, one of the main technical contributions of this paper has been to de-
velop lower bounds for different regimes. For example, m < n versus m > n, require
distinct lower-bounding techniques. Studying exactly sparse signals again requires new
techniques. In addition, for studying the lower bound in the singular case m > n (i.e.,
the number of sensors m is larger than the dimension n of the signal xo, which forces
the data yl ∈ Rm to lie in a significantly higher dimensional space) we introduce novel
ideas involving the theory of Rao-Blackwell theorem and sufficient statistics, to achieve
matching lower bounds.

(b) In their models, Zhou et al. (2022); Chen et al. (2024, 2025) did not account for varying
measurement scenarios. They also studied the ideal setting where the additive noise
was set to zero, and imposed the assumption m < n; in fact, Zhou et al. (2022) further
required m = Θ(n). As our proofs will demonstrate, relaxing each of these assumptions
and deriving sharp bounds necessitate new technical contributions. For example, our
proof strategy for the case m > n is fundamentally different from that for m < n.

Prior to this work, coarser high probability upper bounds for
∥x̂−xo∥22

n were obtained in Zhou
et al. (2022) for the single-look speckle noise model where the signal class comes from a structured
compression codebook, and Chen et al. (2024, 2025) for multi-look unvarying measurement speckle
noise model where the signals are considered as images of a (bi-)Lipchitz function. In addition, the
main theorems in these works assume the undersample regime m ≪ n and additive noise σz = 0.
This paper overcomes all these limitations.

Another classical problem of study is nonparametric function recovery. Consider the regression
model

yi = f(xi) + τi, i = 1, 2, . . . , n, (3.3)

11



where f is the unknown function from a non-parametrized functional space S and τi’s are random
noises. xi can be either fixed or random design points. One can study the minimax risk, for
example,

R2(S , στ ) := inf
f̂

sup
f∈Θ

Ef∥f − f̂∥22 (3.4)

The classical subjects of study for S include Hölder classes Tsybakov (1986); Korostelev and
Tsybakov (1993); Arias-Castro et al. (2012); Maleki et al. (2012, 2013), Soblev classes Nemirovskii
(1985); Nemirovskii A.S. and Tsybakov (1985), and Besov classes Kerkyacharian and Picard (1992);
Donoho and Johnstone (1998b); Donoho (1999); DeVore et al. (2025). Recently, Malekian et al.
(2025) studied the minimax risk under the speckle noise model

yi = f(xi)ξi + τi, i = 1, 2, . . . , n. (3.5)

where ξi’s are i.i.d. N (0, 1) and τi’s are i.i.d. N (0, σ2
n) random variables, xi = i/n, i = 1, 2, ..., n

are fixed design points, and S is the space of functions with uniform upper and lower bounds in a
Hölder class.

Moreover, we treat both undersample (m ≤ n) and oversample (m ≥ n) regimes and demon-
strate how m and n determine the thresholds with respect to which the noise level σz from z1, ...,zL
can affect the minimax rates. This provides a complete picture to the minimax error estimation of
this problem.

4 Preliminaries

In this section we summarize technical results used in this paper, see Appendix C for proofs.

4.1 Results regarding the minimax risk

In the proofs of some our main results we will need some of the basic monotonicity properties of
the minimax risk. While such results are intuitive and well-known on simpler problems such as
in the estimation of the mean of a Gaussian random vector Donoho and Johnstone (1994a), for
completeness, we prove them for the estimation problems we discuss in this paper.

Our first lemma suggests that increasing the number of observations m makes the statistical
problem only easier.

Lemma 4.1. R2(C,m, n, σz) as defined in (2.3) and R†
2(C,m, n, σz) as defined in (2.9) are non-

increasing in m.

Our next lemma confirms that increasing the variance of the additive noise only makes the
estimation problem harder.

Lemma 4.2. R2(C,m, n, σz) as defined in (2.3) and R†
2(C,m, n, σz) as defined in (2.9) are non-

decreasing in σz.

We use the following version of Fano’s method to obtain the lower bounds for the minimax risk:

Lemma 4.3 (Generalized Fano method, Lemma 3, Yu (1997)). Let P be a space of probability
measures such that for each P ∈ P, there is an associated parameter θ(P) of interest. Let d be a
pseudo-metric on the space θ(P). Suppose there exists an integer r ≥ 2 and parameters αr and βr
satisfying

12



1.
{
θ(P1), ..., θ(Pr)

}
is an αr-separated subset in (θ(P), d), namely for all 1 ≤ i ̸= j ≤ r,

d(θ(Pi), θ(Pj)) ≥ αr.

2. For all 1 ≤ i ̸= j ≤ r, we have the upper bound for Kullback–Leibler divergence

KL(Pi ∥ Pj) :=

∫
log(Pi/Pj)dPi ≤ βr

Then for any θ̂ ∈ θ(P), we have the lower bound estimate

max
1≤j≤r

EPj

[
d
(
θ̂, θ(Pj)

)]
≥ αr

2

(
1− βr + log 2

log r

)
.

As is clear from the above theorem in order to use Fano’s inequality, we have to find an upper
bound for the KL divergence of two distributions. One of the results that will be used in our paper
is the following well-knonw result on the KL divergence of two Gaussian distributions:

Proposition 4.4. (Duchi, 2007) If Qj ∼ N(µj ,Λj), j = 1, 2, are two d-dimensional multivariate
normal distributions, then

KL(Q1 ∥ Q2) =
1

2

[
log

detΛ2

detΛ1
− d+Tr

(
Λ−1

2 Λ1

)
+ (µ2 − µ1)

⊤Λ−1
2 (µ2 − µ1)

]
. (4.1)

4.2 Results on covering numbers

Definition 4.5. A α-separating subset of S is a finite or countable collection {xi} of points of
X satisfying dist(xi,xj) ≥ α for any i ̸= j. We call the largest possible cardinality among all
α-separated subsets of S the α-packing number of S, denoted Pα(S). In other words,

Pδ(S) := sup {n : there exists a α-separated subset of S of cardinality n} . (4.2)

Proposition 4.6 ((Vershynin, 2018, Proposition 4.2.12)). For any Euclidean ball BR ⊂ Rn of
radius R > 0 (in ℓ2 norm), we have an estimate for its δ-covering number as follows:(

R

δ

)n

≤ Nδ(BR) ≤
(
2R

δ
+ 1

)n

. (4.3)

4.3 Concentration and decoupling results

We first start with a decoupling result that will play critical role in our paper:

Lemma 4.7. (De la Pena and Giné, 2012, Theorem 3.4.1.) Let X1, X2, . . . , Xn denote random
variables with values in measurable space (S,S). Let (X̃1, X̃2, . . . , X̃n) denote an independent copy
of X1, X2, . . . , Xn. For i ̸= j let hi,j : S

2 → R. Then, there exists a constant C such that for every
t > 0 we have

P

∣∣∣∑
i̸=j

hi,j(Xi, Xj)
∣∣∣ > t

 ≤ CP

C
∣∣∣∑
i̸=j

hi,j(Xi, X̃j)
∣∣∣ > t

 .
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One of the concentration results that will be used extensively in our paper is the concentration
of quadratic functions, a.k.a. Hanson-Wright inequality.

Lemma 4.8 (Hanson-Wright inequality, Hanson and Wright (1971)). Let ξ = (ξ1, ..., ξn)
⊤ be a

random vector with independent components with E[ξi] = 0 and ∥ξi∥subgau ≤ K. Let A be an n×n
matrix. Then, for t > 0,

P
([∣∣∣ξ⊤Aξ − E[ξ⊤Aξ]

∣∣∣ > t
])

≤ 2 exp

−cmin

(
t2

K4∥A∥2HS

,
t

K2∥A∥2

) , (4.4)

where c is a constant, and ∥ξi∥subgau = inf{t > 0 : E(exp(ξ2i /t2)) ≤ 2}.

We will use the following classical results on random matrices throughout our proofs:

Lemma 4.9. (Rudelson and Vershynin, 2010, Theorem 2.6) and (Davidson and Szarek, 2001,
Theorem II.13) Let A be an m×n random matrix with elements drawn i.i.d. from N(0, 1). Then,,

P(σmax(A) ≤
√
n+

√
m+ t) ≥ 1− 2e−

t2

2 , t > 0.

Moreover, if m < n, then for any t > 0,

P(
√
n−

√
m− t ≤ σmin(A) ≤ σmax(A) ≤

√
n+

√
m+ t) ≥ 1− 2e−

t2

2 .

Throughout the proof for the varying forward operators, we will use this result in the following
way. For i.i.d. m× n, N(0, 1) Gaussian matrices A1, ..., AL, we define the event

Emaxsing(t, L) :=
L⋂
l=1

{
σmax(Al) ≤

√
n+

√
m+ t

}
. (4.5)

With a slight overloading of our notation we also define:

Emaxsing := Emaxsing

(√
n+

√
m

2
, L

)
. (4.6)

If n ≥ 4m, we define the event

Esing(t, L) =
L⋂
l=1

{√
n−

√
m− t ≤ σmin(Al) ≤ σmax(Al) ≤

√
n+

√
m+ t

}
, (4.7)

and again define a slightly overloaded notation:

Esing := Esing

(√
n−

√
m

2
, L

)
, P[Esing] ≥ 1− 2L exp

(
−(

√
n−

√
m)2

8

)
, (4.8)

where the last inequality followed from Lemma 4.9. Similarly, for m ≥ 4n, we define the event

E ′
sing(t, L) =

L⋂
l=1

{√
m−

√
n− t ≤ σmin(A

⊤
l ) ≤ σmax(A

⊤
l ) ≤

√
m+

√
n+ t

}
. (4.9)
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For the special case when t =
√
m−

√
n

2 , we again use Lemma 4.9 to get

E ′
sing := E ′

sing

(√
m−

√
n

2
, L

)
, P[E ′

sing] ≥ 1− 2L exp

(
−(

√
n−

√
m)2

8

)
. (4.10)

The following lemma, proved in Subsection C.3, is a generalization and more accurate version
of Lemma 4 and 5 from Zhou et al. (2024):

Lemma 4.10. Let {A1}Ll=1 ∈ Rm×n be Gaussian matrices. For any fixed d ∈ Rn, define D =

diag(d). Define the event Ẽmaxsing :=
⋂L

l=1

⋂m
i=1

{
σmax(Ãl,\i) ≤ 3

2(
√
m+

√
n)
}

where Ãl,\i is an

independent copy of Al with i-th row removed. Then P(Ẽmaxsing) ≥ 1−2mL exp(−cn) and we have

1. The upper tail probability

P


 L∑

l=1

∥AlDA⊤
l ∥2HS > Lm

(
Tr(D) + t1

)2
+ Lm(m− 1)∥d∥22 + t2

 ∩ Ẽmaxsing


≤ 2mL exp

−cmin

(
t21

K4∥d∥22
,

t1
K2∥d∥∞

)+ 2m exp

−cmin

(
t22

K4Lm3∥d2∥22
,

t2
K2m∥d2∥∞

)
+ 2C exp

−cmin

(
4t22

81C2K4∥d2∥22mL(
√
n+

√
m)4

,
2t2

9CK2∥d∥2∞(
√
n+

√
m)2

) .

(4.11)

2. The lower tail probability

P


 L∑

l=1

∥AlDA⊤
l ∥2HS < Lm(m− 1)∥d∥22 − t

 ∩ Ẽmaxsing


≤ 2C exp

−cmin

(
4t2

81C2K4∥d2∥22mL(
√
n+

√
m)4

,
2t

9CK2∥d∥2∞(
√
n+

√
m)2

)
+ 2m exp

−cmin

(
t2

K4Lm3∥d2∥22
,

t

K2m∥d2∥∞

) .

(4.12)

where C and c are absolute constants. Here 1 ≤ K ≤ 2 denotes the subgaussian norm of a standard
Gaussian random variable.

4.4 Linear algebraic results

The following simple linear algebraic result will help us in bounding the differences between the
inverse of two matrices.
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Lemma 4.11. (Chen et al., 2024, Lemma 6.1) Let B,C ∈ Rn×n be symmetric, invertible matrices.

Then
∥∥B−1 − C−1

∥∥
2
≤ σmax

(
B−1 − C−1

)
≤ σmax(B−C)

σmin(B)σmin(C) .

Lemma 4.12. Let A denote an arbitrary matrix and D be a diagonal matrix. Then we have,

∥AD∥HS ≤ σmax(A)∥D∥HS.

Lemma 4.13 (Von Neumann’s trace inequality). (Horn and Johnson, 2012, Theorem 7.4.1.1)
Let A ∈ Rn×n and B ∈ Rn×n denote two matrices with singular values σA

i and σB
i . Then, we

have
Tr(AB) ≤

∑
σA
i σ

B
i .

The following theorem is a generalization of (Zhou et al., 2022, Lemma 5).

Lemma 4.14. Denote Σ̃ = (σ2
zIm +AX̃2A⊤)−1,Σ = (σ2

zIm +AX2A⊤)−1. Then,

∥∥∥A(X̃2 −X2)A⊤
∥∥∥2
HS

(
σ2
z + x2minλmin(AA⊤)

)2
(
σ2
z + x2maxλmax(AA⊤)

)4 ≤ Tr
[
(Σ−1(Σ̃− Σ)Σ−1(Σ̃− Σ)

]

≤

(
σ2
z + x2maxλmax(AA

⊤)
)2

(
σ2
z + x2minλmin(AA⊤)

)4 ∥∥∥A(X̃2 −X2)A⊤
∥∥∥2
HS

.

5 Proof of the lower bound in the case m < n
4

5.1 Outline of the proof strategy

As increasing a and b only makes Fa,b,k,n larger, it suffices to prove Definition 2.8 for a = xmax−xmin

and b = 1. We will apply Definition 4.3 with the following definitions to obtain the minimax
lower bound in Definition 2.7. Given x ∈ Rn, let Px denote the probability distribution of data
#»y = [y⊤

1 , . . . ,y
⊤
L ]

⊤ generated according to the model (2.2) with X = diag(x). More specifically,
we choose:

Px ∼ ⊗L
l=1N(0,Σ−1

l (x)) = N(0,Σ−1(x)),

Σ(x) := diag
(
Σ1(x), ...,ΣL(x)

)
, Σl = Σl(x) := (σ2

zIm +AlX
2A⊤

l )
−1.

(5.1)

Then, the parameter θ(P(x)) corresponding to the distribution P(x) is chosen as

θ(P(x)) = x, d(θ(Px), θ(Px′)) = d(x,x′) := ∥x− x′∥2,x,x′ ∈ Rn, (5.2)

and we select a subset C of the parameters that is large enough to provide us with the desired
complexity. In order to apply Lemma 4.3 we identify a discretization Ssep ⊂ C, |Ssep| = r satisfying:

(P1) For any xi,xj ∈ Ssep with xi ̸= xj , the corresponding parameters θ(Pxi), θ(Pxj ) (which are
identically xi,xj according to our definition) are well separated. In particular, for an αr to
be chosen appropriately, we will establish that

d(θ(Pxi), θ(Pxj )) = ∥xi − xj∥ ≥ αr, xi ̸= xj ∈ Ssep.
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(P2) For all 1 ≤ i ̸= j ≤ r, for a βr > 0 to be chosen later, the distributions Pxi ,Pxj are difficult
to distinguish in the Kullback-Leibler divergence, at the level βr

KL(Pxi ∥ Pxj ) ≤ βr, xi,xj ∈ Ssep. (5.3)

Then, Lemma 4.3 directly implies that there exists a constant C > 0 for which

inf
x̂

sup
1≤j≤r

E

[
∥x̂− xj∥2

n

]
≥ Cα2

r

n

(
1− βr + log 2

log r

)2

. (5.4)

In particular, for some small c > 0, we will end up making the following choice for r, αr, βr

log r = Θ(k logn), αr = Θε,xmax,xmin

(
max(σ4

z , n
2)k log n

m2L

)
, βr = c log r.

As a consequence, by Definition 4.3 the following lower bounds holds for any estimator x̂

max
1≤i≤r

E

[
∥x̂− xi∥2

n

]
≥ α2

r

4n

(
1− βr + log 2

log r

)2

= Θε,xmax,xmin

(
max(σ4

z , n
2)k log n

m2nL

)
.

Our proof strategy in the following sections will describe a construction which will dictate, with a
high probability, the above choices for r, αr, βr. All the technical proofs are provided in Appendix D.

5.2 Construction of the signal class

We will first construct the signal class C. Fix 0 < xmin < xmax. For any array of nonnegative
integers 0 = a0 < a1 < · · · < ak = n, let

{
(al−1, al]Z : l ∈ [k]

}
be an ordered k-partition of [n].

[n] = ∪k
l=1(al−1, al]Z. (5.5)

Let F(a0, ..., ak) denote the set of functions from [n] to [xmin, xmax] that are constant on each integer
interval (al−1, al]Z, l = 1, 2, ..., l. Define

Fk :=
⋃

0=a0<a1<···<ak=n

F(a0, ..., ak), Xk := {(f(1), ..., f(n)) ∈ Rn : f ∈ Fk} ⊂ [xmin, xmax]
n. (5.6)

Xk satisfies the polynomial complexity of order k defined in definition 2.1. To see this, first note
that Xk can be written as a finite union:

Xk =
⋃

0=a0<a1<···<ak=n

{(f(1), ..., f(n)) ∈ Rn : f ∈ F(a0, ..., ak)}. (5.7)

We have

Nε(Xk) ≤
∑

0=a0<a1<···<ak=n

(
xmax − xmin

ε

)k

=

(
n

k

)(
xmax − xmin

ε

)k

(5.8)

(a)

≤
(
n(xmax − xmin)

ε

)k

(5.9)
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where for (a) we used
(
n
k

)
≤ nk. Hence Xk satisfies (2.1).

Intuitively, the class of signals we have considered are ‘piecewise constant’. This is a natural
and popular choice for class of images in image processing Rudin et al. (1992); Jalali and Maleki
(2016); Donoho (1999). Definition 2.5 shows that this set satisfies the polynomial complexity of
order k.

We now pick signal class C as any subset [xmin, xmax]
n which is a superset of Xk and satisfies

the polynomial complexity of order k. Hence

Xk ⊂ C ⊂ [xmin, xmax]
n.

Given this choice of C we now would like to show that

R2(C,m, n, σz) =Ωε,xmax,xmin

(
max(σ4

z ,m
2, n2)k log n

m2nL

)
.

5.3 Discretization of the signal class to apply Fano’s Lemma

To construct an αr-separated subset Ssep, we first define X finite ⊂ C as follows. For ε ∈ (0, 1),
denote

Ndiv := knε. (5.10)

For simplicity, assume that both Ndiv and n/Ndiv are integers. We partition [n] into Ndiv pieces as

[n] =

Ndiv⋃
l=1

(
(l − 1)n

Ndiv
,

ln

Ndiv

]
Z

Note that each j ∈ [n] (corresponding to subscripts of the coordinates of x) will fall into one of the

intervals
(
(lj−1)n
Ndiv

,
ljn
Ndiv

]
Z
. Each integer interval contains Θ(n/Ndiv) indices of x = (x1, x2, . . . , xn).

Fix 0 < δr < xmax−xmin
2 to be determined later and define x̄ = xmin+xmax

2 . Let BNdiv
de-

note the collection of all functions from [n] to {x̄, x̄+ δr}, that are piecewise constant on each(
(l−1)n
Ndiv

, ln
Ndiv

]
Z
, l = 1, 2, ..., Ndiv. We define

Bfinite :=
{
(f(1), ..., f(n)) : f ∈ BNdiv

}
∩ C ⊂ {x̄, x̄+ δr}n . (5.11)

We construct X finite ⊂ Bfinite as follows: among the Ndiv intervals, select k/2 of them; for the
entries of the vector corresponding to these intervals, assign the value x̄+ δr, and set all remaining
entries to x̄. It is straightforward to see that

|X finite| =
(
Ndiv

k/2

)
. (5.12)

Now we construct a subset Ssep of X finite that satisfies αr-separation condition (P1) as follows.

• Set k′ := k/4 and let Ssep denote the set of all vectors in X finite with the following property:
If xi and xj are in Ssep then, their q-th components satisfy xi,q ̸= xj,q for all q in at least

k′-many different intervals of the form
(
(l−1)n
Ndiv

, ln
Ndiv

]
Z
.
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The set Ssep is the set of hypothesis that we use in Fano’s Theorem. The following guarantees hold.

Cardinality of Ssep: The following lemma obtains an upper and a lower bound for |Ssep|.

Lemma 5.1. Let r := |Ssep| denote the cardinality of the set Ssep. Then(
cNdiv

k

)c′k

≤ r ≤
(
Cn

k

)C′k

for some absolute constants c, C, c′, C ′ > 0. Consequently, log r = Θ(k log n).

Minimum separation of elements in Ssep: As the number of integer points in each interval(
(l−1)n
Ndiv

, ln
Ndiv

]
Z
is bounded below by n

Ndiv
− 2, we have minxi,xj∈S

xi ̸=xj

∥∥xi − xj

∥∥2
2
≥ k′ ·

(
n

Ndiv
− 2
)
· δ2r .

In view of the above, for a small constant c > 0, we choose αr as

α2
r =

cknδ2r
Ndiv

. (5.13)

Uniform signal strengths for elements in Ssep: Consider xi,xj ∈ Ssep. Suppose that Xi, Xj

denote diagonal square matrices diag(xi), diag(xj) respectively. Since n
Ndiv

is an integer by as-
sumption, xi and xj have exactly the same number of components equal to x̄ and x̄ + δr, we
have

Tr(X2
i −X2

j ) = 0. (5.14)

5.4 The bound for Kullback-Leibler divergence

The following lemma is instrumental in bounding the KL-divergence.

Lemma 5.2. Denote Emax := max1≤l≤L λmax(AlA
T
l ), Emin := min1≤l≤L λmin(AlA

T
l ). On the event

Esing, defined in (4.8), if
[σ2

z+x2
max·Emax]·Emax

(σ2
z+x2

min·Emin)
2 · xmaxδr <

1
4 , we have for all xi ̸= xj ∈ Ssep

KL(Pxi ∥ Pxj ) ≤2

(
σ2
z + x2maxEmax

)2(
σ2
z + x2minEmin

)4 L∑
l=1

∥∥∥Al(X
2
i −X2

j )A
⊤
l

∥∥∥2
HS

,

where Xi and Xj are diagonal matrices corresponding to the vectors xi,xj ∈ Ssep.

We now apply the upper tail bound of Definition 4.10 to find a deterministic upper bound for∑L
l=1

∥∥∥Al(X
2
i −X2

j )A
⊤
l

∥∥∥2
HS

. We set di,j := x2
i − x2

j , and define Di,j = diag(di,j)) to get:

∥di,j∥∞ = max
p

|x2i,p − x2j,p| ≤ 2xmax∥xi − xj∥∞, ∥d2
i,j∥∞ ≤ 4x2max∥xi − xj∥2∞,

∥di,j∥22 =
n∑

p=1

(
x2i,p − x2j,p

)2
≤ 4x2max

n∑
p=1

(
xi,p − xj,p

)2
= 4x2max∥xi − xj∥22,

∥d2
i,j∥22 =

n∑
p=1

(
x2i,p − x2j,p

)4
≤ 16x4max

n∑
p=1

(
xi,p − xj,p

)4
= 16x4max∥xi − xj∥44.

(5.15)
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We choose the following values of t1,i,j and t2,i,j to apply the upper tail bound in Definition 4.10

t1,i,j :=Ct1

(
xmax

∥∥xi − xj

∥∥
2

√
log(mLr2) + xmax

∥∥xi − xj

∥∥
∞ log(mLr2)

)
;

t2,i,j :=Ct2 logm

(
x2max

∥∥xi − xj

∥∥2
4

√
mL(

√
m+

√
n)4 log r2 + x2max

∥∥xi − xj

∥∥2
∞ (

√
n+

√
m)2 log r2

)
,

where Ct1 and Ct2 are two constants. To apply Definition 4.10, we note that the non-constant
terms appearing in the exponent of Definition 4.10 obeys the following lower bounds

(a)
t21,i,j

∥di,j∥22
is bounded from below by

t21,i,j
4x2

max∥xi−xj∥22
= Ω(log(mLr2)),

(b)
t1,i,j

∥di,j∥∞ is bounded from below by
t1,i,j

2xmax∥xi−xj∥∞ = Ω(log(mLr2)),

(c)
t22,i,j

mL(
√
n+

√
m)4∥d2

i,j∥22
is bounded from below by

t22,i,j
16x4

maxmL(
√
n+

√
m)4∥xi−xj∥44

= Ω(log(mLr2)),

(d)
t2,i,j

(
√
n+

√
m)2∥di,j∥2∞

is bounded from below by Ω(log(mLr2)),

(e)
t22,i,j

Lm3∥di,j∥22
is bounded from below by Ω((logm)2 log r),

(f)
t2,i,j

m∥di,j∥∞ is bounded from below by Ω((logm)(log r))).

In view of the above definition, consider the event

Edcpl :=
⋂

1≤i<j≤r

 L∑
l=1

∥Al(X
2
i −X2

j )A
⊤
l ∥2HS < Lmt21,i,j + Lm(m− 1)∥di,j∥22 + t2,i,j

 . (5.16)

Then, using Definition 4.10, a union bound for all 1 ≤ i < j ≤ r, and Tr(Dij) = 0, Dij =
diag(dij),dij = x2

i − x2
j (see (5.14)), the above display implies that for sufficiently large constants

Ct1 , Ct2 , we have

P(Ec
dcpl ∩ Ẽmaxsing)

≤
∑

1≤i<j≤r

P


 L∑

l=1

∥AlDijA
⊤
l ∥2HS > Lm

(
Tr(Dij) + t1,i,j

)2
+ Lm(m− 1)∥di,j∥22 + t2,i,j

 ∩ Ẽmaxsing


≤ r2 exp

{
−C̃

(
log(mLr2) + (logm)(log r)

)}
, (5.17)

for a large constant C̃. Hence, by making Ct1 , Ct2 large enough such that C̃ > 10, we have

P(Edcpl ∩ Ẽmaxsing) ≥ 1− P(Ec
dcpl ∩ Ẽmaxsing)− P(Ẽc

maxsing)

≥ 1− r2 exp

{
−10

(
log(mLr2) + (logm)(log r)

)}
− 2mL exp (−cn)

(a)

≥ 1− 1

(rmL)8
− 2mL exp (−cn) . (5.18)
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In view of the above, on the high-probability event Edcpl ∩ Ẽmaxsing, we have for each 1 ≤ i < j ≤ r

L∑
l=1

∥∥∥Al(X
2
i −X2

j )A
⊤
l

∥∥∥2
HS

≤ Lmt21,i,j + Lm(m− 1)∥di,j∥22 + t2,i,j

(a)

≤ CLmx2max

∥∥xi − xj

∥∥2
2
log(mLr2) + CLm

∥∥xi − xj

∥∥2
∞ log2(mLr2) + 4Lm(m− 1)x2max∥xi − xj∥22

+ C logm

(
x2max

∥∥xi − xj

∥∥2
4

√
mL(

√
m+

√
n)4 log r2 +

∥∥xi − xj

∥∥2
∞ (

√
n+

√
m)2 log r2

)
(b)

≤ CLmx2max

kn

Ndiv
δ2r log(mLr2) + CLmδ2r log

2(mLr2) + 4Lm(m− 1)x2max

kn

Ndiv
δ2r

+ C logm

x2max

√
kn

Ndiv
δ2r

√
mL(

√
m+

√
n)4 log r2 + δ2r (

√
n+

√
m)2 log r2

 ,

where (a) followed by using the inequality (a + b)2 ≤ 2a2 + 2b2, and for (b) we have used the
fact that by our construction of X finite

k , xi − xj is 2kn
Ndiv

-sparse for any xi,xj ∈ Ssep, and thus∥∥xi − xj

∥∥
∞ ≤ δr,

∥∥xi − xj

∥∥2
2
≤ kn

Ndiv
δ2r , and

∥∥xi − xj

∥∥2
4
≤
√

kn
Ndiv

δ2r . Hence, restricting to the

event Edcpl ∩ Ẽmaxsing ∩ Esing, together with Definition 5.2 and Emax ≈ n, we have for constant
C̄ := Cxmin,xmax > 0

βr := max
1≤i<j≤r

KL(Pi ∥ Pj)

≤ 2

(
σ2
z + x2max · Emax

)2(
σ2
z + x2min ·

1
4(
√
n−

√
m)2

)4 max
1≤i<j≤r

L∑
l=1

∥∥∥Al(X
2
i −X2

j )A
⊤
l

∥∥∥2
HS

≤ C̄

max(σ4
z , n

2)

(
Lm

kn

Ndiv
δ2r log(mLr2) + Lmδ2r log

2(mLr2) + Lm(m− 1)
kn

Ndiv
δ2r

+ logm

√
kn

Ndiv
δ2r

√
mL(

√
m+

√
n)4 log r2 + δ2r (

√
n+

√
m)2(logm)(log r2)

)

≤ C̄δ2rm
2nLk

max(σ4
z , n

2)Ndiv

(
log(mLr2)

m
+

log2(mLr2)Ndiv

mnk
+ 1 +

√
nNdiv log r2

Lkm3/(logm)2
+

(logm)(log r2)Ndiv

Lm2

)

≤ Θxmin,xmax(1)
m2nLk

max(σ4
z , n

2)Ndiv
δ2r , (5.19)

where the last inequality followed by factoring out δ2r and using the following inequalities that are
consequences of Definition 5.1, alongside our assumptions logm = Θ(log n), logL = O(log n), and
there exists ε ∈ (0, 1/2) such that k ≤ n1−2ε,max(σ4

z ,m
2, n2)k log n ≤ m2n1−εL.

• log(mLr2) ≤ logm + logL + 2 log r < m/3 for all large m,L, n as logm = Θ(logn), logL =
O(logn) and log r = Θ(logn) from Definition 5.1.

• Similar to above, we have log2(mLr2)Ndiv

mnk ≤ 1 for all large m,L, n, as Ndiv
nk < n−(1−ϵ) from

(5.10).
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• nNdiv log r2

Lkm3/(logm)2
≤ 1 as Ndiv

k ≤ nϵ and hence, using max(σ4
z ,m

2, n2)k log n ≤ m2n1−εL we get

nNdiv log r
2

Lkm3/(logm)2
≤ n1+ε log r2

Lm3/(logm)2
≲

max(σ4
z ,m

2, n2) logn

n1−εLm2.5
≲

1

k
√
m
.

• Finally (logm)(log r2)Ndiv

Lm2 ≤ 1 for all large m,L, k as Ndiv = knε and m2L > kn1+ε from the
last property max(σ4

z ,m
2, n2)k log n ≤ m2n1−εL as well.

In view of the above argument, and also Definition 5.2, our we choose δr satisfying the following.

• We want βr < c log r for a small constant c > 0 to maximize the lower bound from Defini-
tion 4.3.

• To justify the application of Definition 5.2 we need
[σ2

z+x2
max·Emax]·Emax

(σ2
z+x2

min·Emin)
2 · xmaxδr <

1
4 .

• Since the maximum value the signals in Ssep can take is x̄ + δr and since Ssep ⊂ C and the
maximum value of the entries of the vectors in C is xmax we have to ensure that x̄+δr < xmax.

In view of the above, consider the following choice of δr for a small constant cδ > 0 (possibly
depending on xmin, xmax)

δ2r := cδ∆
−2 · max(σ4

z , n
2) log r

nm2L
· Ndiv

k
(5.20)

where r = |Ssep|, and ∆ = ∆(m,n, xmax, xmin) :=
[σ2

z+x2
max·Emax]·Emax

(σ2
z+x2

min·Emin)
2 · 2xmax. The first two con-

ditions can be verified using the upper bound (5.19) and the definitions of δ2r . To check the final
condition, i.e., x̄+ δr < xmax, we first note that since Emax and Emin depend on Al, δr is a random
number. Hence, to find a deterministic upper bound for δr we only consider the measurement
matrices that belong to the event Esing defined in (4.8). In view of the definition of Esing, in the
above event we have Emax = Θ(n) and Emin = Θ(n). Hence,

δ2r = Θxmax,xmin

(
max(σ4

z , n
2) log r

nm2L
· Ndiv

k

)
= Θxmax,xmin

(
max(σ4

z , n
2) log r

n1−εm2L

)
, (5.21)

where the last identity followed by plugging (5.10) and the result of Lemma 5.1 By the assump-
tions we made in the main theorem, i.e., max(σ4

z ,m
2, n2)k log n ≤ m2n1−εL and the fact that

max(σ4
z ,m

2, n2) = n2, we can see that
(
n1+ϵk log(n/k)

m2L

)
< 1. Hence, by choosing cδ in the definition

of δr in (5.20) small enough we can ensure that x̄+ δr < xmax holds.

5.5 Concluding the proof

For sufficiently small cδ > 0, (5.19) ensures that we have βr ≤ 1
10 log r. Therefore, by conditioning

on A1, ..., AL and restricting to the high probability event Ẽmaxsing ∩Edcpl ∩Esing, we have βr

log r ≤ 1
10

and P
(
Ẽmaxsing ∩ Edcpl ∩ Esing

)
> 1

2 . In view of (5.13) and (5.20) we get that

α2
r =

cknδ2r
Ndiv

= Θxmax,xmin

(
max(σ4

z , n
2)

m2

k log
(
Ndiv/k

)
L

)
. (5.22)
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As a consequence, by Definition 4.3 we have for any estimator x̂, the lower bound

max
1≤i≤r

E

[
∥x̂− xi∥2

n

]
≥α2

r

4n

(
1− βr + log 2

log r

)2

P
(
Ẽmaxsing ∩ Edcpl ∩ Esing

)
= Θ

(
α2
r

n

)

=Θxmax,xmin

(
max(σ4

z , n
2)

m2n

k log
(
Ndiv/k

)
L

)
= Θε,xmax,xmin

(
max(σ4

z , n
2)k log n

m2nL

)
.

6 Proof of the lower bound for the case m ≥ n
4

This section will primarily establish the lower bound for the sub-case m ≥ 4n, σ2
z = 0 given by

R2(Ck,m, n, 0) = inf
δ

sup
x∈Ck

E

∥∥δ( #»y )− xo

∥∥2
2

n

 = Ωε,xminxmax

(
k log n

nL

)
, m ≥ 4n. (6.1)

Then, the lower bound for a general σ2
z ≥ 0 and 4n ≥ m ≥ n

4 follow from Definition 4.1 and
Definition 4.2, as the minimax risk is a non-increasing function of m and an increasing function of
σ2
z , the variance of the additive noise component. To see the above, we first fix σ2

z = 0. Note that,
in view of Definition 4.1, as the risk is a non-increasing function of m, the last display implies

R2(Ck,m, n, 0) ≥ R2(Ck, 4n, n, 0) = Ωε,xmin,xmax

(
k log n

nL

)
,

n

4
≤ m ≤ 4n. (6.2)

Hence, combining the lower bounds in (6.1) and (6.2) we get

R2(Ck,m, n, 0) = Ωxmax,xmin

(
k log n

nL

)
, m ≥ n

4
. (6.3)

To achieve a lower bound for a general σ2
z ≤ m, when m ≥ n

4 , we first use that the miminax error is
non-decreasing function in σz (Definition 4.2) to get R2(Ck,m, n, 0) ≤ R2(Ck,m, n, σz). Then, for
σ2
z ≤ m, combining (6.3) with the upper bound for σ2

z = m from Definition 2.7, for m ≥ n
4 , we get

C1
k log n

nL
≤ R2(Ck,m, n, 0) ≤ R2(Ck,m, n, σz) ≤ R2(Ck,m, n,

√
m) ≤ C2

k log n

nL
, (6.4)

where C1, C2 are constants depending on xmin, xmax. Hence, the sandwich inequality implies

R2(Ck,m, n, σz) = Θxmax,xmin

(
k log n

nL

)
, whenever m ≥ n

4
, σ2

z ≤ m. (6.5)

Next, supposem ≥ n
4 and σ2

z ≥ m. We observe that the only use ofm ≤ n
4 in the proofs of Section 5,

was to bound Emin from below. Notably, in the proof of Section 5, only places we used the lower
bound on Emin, are given in Definition 5.2 and (5.19). Then we note that we can repeat the entire
analyses of lower bound in Section 5 to establish the lower bound for the case m ≥ n

4 and σ2
z ≥ m

by replacing Esing with Emaxsing and the lower bound for the singular value σmin(σ
2
zIn + AlX

2
oA

⊤
l )

by σ2
z . As a consequence, we have the lower bound

R2(Ck,m, n, σz) = Ωxmax,xmin

(
σ4
z

m2n
· k log n

L

)
, whenever m ≥ n

4
, σ2

z ≥ m. (6.6)
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Combining (6.6) and (6.5) for the case m ≥ n
4 yields the desired minimax lower bound

R2(Ck,m, n, σz) = Ωxmax,xmin

(
max(σ4

z ,m
2)

m2n
· k log n

L

)
, m ≥ n

4
, σz ≥ 0. (6.7)

We complete our proof by establishing the lower bound in (6.1). We bring forward ideas related
to sufficient statistics for our proof, using the following definition used throughout this section.

Definition 6.1. (Casella and Berger, 2024, Definition 6.2.1) A statistics T ( #»y ) is sufficient for xo

if the conditional distribution of the sample #»y given the value T ( #»y ) does not depend on xo.

Define A = diag(A1, . . . , AL) ∈ RmL×nL and note that A⊤A = diag(A⊤
1 A1, . . . , A

⊤
LAL).

Throughout the section we analyze the expected loss on the high probability event E ′
sing defined in

(4.10), where all the matrices {A⊤
l Al}Ll=1 are invertible. Then we have the following result.

Proposition 6.2. Consider the case σz = 0 and that the event E ′
sing holds. Then TA( #»y ) =

(A⊤A)−1A⊤ #»y is a sufficient statistic for the parameter xo.

Proof. Note that, TA(
#»y ) is an one to one transformation of #»y whenever A⊤A is invertible, as

ATA( #»y ) = #»y . As any one to one transformation of a sufficient statistics is also a sufficient
statistics, and #»y is itself a sufficient statistics, we get that TA( #»y ) is a sufficient statistics.

We will use the Rao-Blackwell theorem to first bound the desired minimax risk from below
using the squared error loss for the sufficient statistic TA( #»y ).

Theorem 6.3 (Rao–Blackwell theorem, MSE version). (Shao, 2008, Theorem 2.5) Let δ( #»y ) be
any estimator of the parameter xo and TA( #»y ) is a sufficent statistics for xo. Then g(TA( #»y )) =
E[δ( #»y ) | TA( #»y )] is also an estimator for xo and it provides an improved error guarantee

E
[∥∥δ( #»y )− xo

∥∥2
2
|E ′

sing

]
≥ E

[∥∥g(TA( #»y ))− xo

∥∥2
2
|E ′

sing

]
.

In view of the above result, we establish a lower bound to E
[∥∥g(TA( #»y ))− xo

∥∥2
2

]
to complete

our analysis. This is provided in the result below.

Lemma 6.4. Consider the model (1.2) with σz = 0,m ≥ 4n. Then, there exists a constant C ≥ 0,
we have

inf
g

sup
x∈Ck

E
[∥∥g(TA( #»y ))− xo

∥∥2
2
|E ′

sing

]
≥ C

k log n

L
.

Proof of Definition 6.4. By our construction, we have that TA( #»y ) = [u⊤
1 , ...,u

⊤
L ]

⊤, where ul =
(A⊤

l Al)
−1Alyl ∈ Rn. In the above optimization problem, as the estimators we consider are all of

the form g(TA( #»y )), we may treat u1, ...,uL as our observations and the problem transformed into
recovering xo ∈ Ck from the simplified model

ul = Xowl, wl ∼ N(0, In), l = 1, 2, ..., L.

Hence, the new data distribution for which we will apply Lemma 4.3 to derive the lower bound is

Px ∼ ⊗L
l=1N(0,Σ−1

l (x)) = N(0,Σ−1(x)),

Σ(x) := diag
(
Σ1(x), ...,ΣL(x)

)
, Σl = Σl(x) := (σ2

zIn +X2)−1.
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To obtain the lower bound, we shall use Definition 4.3 and a similar discretization and construction
of αr-separated set {x1, ...,xr} as in Section 5.3, with Ndiv = knε and the following choice for δ2r , α

2
r

δ2r := cδ
log r

nL
· Ndiv

k
, and

α2
r

n
:=

k

Ndiv
δ2r , (6.8)

for a small constant cδ > 0. Denote Pxi as Pi for i ∈ {1, . . . , r}. Using the fact that by our earlier
construction of {x1, . . . ,xr}, we have kn

Ndiv
and xi−xj is

2kn
Ndiv

-sparse for any xi ̸= xj , which implies∥∥xi − xj

∥∥2
2
≤ 2kn

Ndiv
δ2r . Hence, using Definition 5.2, with Al = In, and Emax = Emin = 1), we get

βr := max
1≤i<j≤r

KL(Pi ∥ Pj) ≤ L
x4max

x8min

max
1≤i<j≤r

∥∥∥X2
i −X2

j

∥∥∥2
HS

≤ 4x6max

x8min

L max
1≤i<j≤r

∥∥xi − xj

∥∥2
2
≤ 4x6max

x8min

Lknδ2r
Ndiv

≤ 1

10
log r,

(6.9)

for sufficiently small cδ in (6.8) to guarantee a small δ2r . Now it follows from Definition 4.3 that

inf
δ

sup
x∈Ck

E

 ∥∥g(TA( #»y ))− xo

∥∥2
2

n

∣∣∣∣∣∣ E ′
sing

 ≥ α2
r

4n

(
1− βr + log 2

log r

)2

P[E ′
sing] = Θε,xmin,xmax

(
k log n

nL

)
.

where the last equality followed using (6.8), asNdiv = knε and α2
r
n = kδ2r

Ndiv
= Θxmin,xmax

(
k log

(
Ndiv

k

)
nL

)
.

In view of the last display, it follows from Theorem 6.3 and Definition 6.4 to conclude (6.1)

inf
δ

sup
x∈Ck

E

∥∥δ( #»y )− xo

∥∥2
2

n

 ≥ inf
δ

sup
x∈Ck

E

 ∥∥g(TA( #»y ))− xo

∥∥2
2

n

∣∣∣∣∣∣ E ′
sing

P
(
E ′
sing

)
= Ω

(
k log n

nL

)
.

7 Proof of the upper bound

7.1 General strategy

Note that without loss of generality, we may assume a = xmax − xmin and b = 1.
We provide the proof of all the technical results in this section later in Appendix E. We will

show that the desired upper bound is achieved by the maximum likelihood estimator

x̂o = argmin
x∈C

f(x), (7.1)

where C is the class of all possible signals, and the negative log-likelihood f(x) is defined as

f(x) =
L∑
l=1

log det
(
σ2
zIm +AlX

2A⊤
l

)
+

L∑
l=1

y⊤
l

(
σ2
zIm +AlX

2A⊤
l

)−1
yl (7.2)

For the entirety of the analysis in this section, we will restrict ourselves to the following event
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S =
{
{Al}Li=1 : σmin(AlA

⊤
l ) ≥ Emin, σmax(AlA

⊤
l ) ≤ Emax, l = 1, . . . , L

}
. (7.3)

This is the only place where we impose restrictions on the singular values of {Al}Ll=1. To get
to the specific minimax risk guarantees in different regimes we will choose appropriate values of
Emax, Emin. In particular, we have the following considerations.

• Case I (n ≥ 4m): We will choose Emax = 9
4(
√
n +

√
m)2 and Emin = 1

4(
√
n −

√
m)2. In

that case the event S satisfies Esing ⊆ S, where Esing is given as in (4.8). This implies
P [S] ≥ P[Esing] ≥ 1− Le−cn for some constant c > 0.

• Case II (n < 4m): We will choose Emax = 9
4(
√
n+

√
m)2 and Emin = 0. In that case the event

S satisfies Emaxsing ⊆ S, where Emaxsing is given as in (4.6). This implies P [S] ≥ P[Emaxsing] ≥
1− Le−cn for some constant c > 0.

In other words we also have

P [S] ≥ 1− Le−cn, for all L,m, n. (7.4)

Consider the following notations for simplifying the presentation. Let {Σl}Ll=1 be the collection of

inverses of the covariance matrix E
[
yly

⊤
l |Al

]
given by

Σl = Σl(x) := (σ2
zIm +AlX

2A⊤
l )

−1, l = 1, . . . , L. (7.5)

Define the vector #»y ∈ RmL and block-diagonal matrix Σ(x) ∈ RmL×mL as the collection of all the
observations and the inverse covariance matrices over different looks

#»y⊤ := (y⊤
1 , ...,y

⊤
L ), Σ(x) := diag

(
Σ1(x), ...,ΣL(x)

)
, Σo = Σ(xo), Σ̂o = Σ(x̂o). (7.6)

In view of the above notations, we can rewrite the negative log-likelihood in (7.2) as

f(x) = − log det(Σ(x)) + #»y⊤Σ(x) #»y (7.7)

Now we proceed with the proof. Our proof strategy draws inspiration from the empirical loss
minimization literature, such as Fan and Gu (2024), Fan et al. (2025), to achieve a parametric
error rate in the sample size L by comparing the negative log-likelihood for the estimator x̂o and
the true parameter xo, that also turns out to be the minimax rate. Since x̂o is the minimizer of
(7.1), we have

f(x̂o) ≤ f(xo). (7.8)

For a fixed x, define f(x) as the function of conditional expectation of f(x) given A1, . . . , AL

f(x) := E[f(x) | A1, ..., AL] = − log detΣ(x) + Tr
(
Σ(x)Σ(xo)

−1
)
. (7.9)
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Simplifying the expression for f(x̂o)− f(xo), with the notations in (7.6) we get

f(x̂o)− f(xo)

= #»y⊤
(
Σ̂o −Σo

)
#»y − Tr

[
Σ−1

o

(
Σ̂o −Σo

)]
+Tr

[
Σ−1

o

(
Σ̂o −Σo

)]
− log det(Σ̂o) + log det(Σo)

= #»y⊤
(
Σ̂o −Σo

)
#»y − Tr

[
Σ−1

o

(
Σ̂o −Σo

)]
+ f(x̂o)− f(xo). (7.10)

Therefore, in view of (7.8) we get

#»y⊤
(
Σo − Σ̂o

)
#»y − Tr(Σ−1

o (Σo − Σ̂o)) ≥ f(x̂o)− f(xo). (7.11)

Our following approach is to find an upper bound for the left side in terms of ∥x̂o − xo∥2 and a
lower bound for the right side in terms of ∥x̂o − xo∥2, and simplify the inequality to get an upper
bound for ∥x̂o − xo∥2. Throughout the rest of the draft we will use the following notation

Cn,m,σz
:= C(n,m, σz, xmax, xmin) = c

σ2
z + x2maxEmax

σ2
z + x2minEmin

, (7.12)

where c > 0 is a large universal constant. Note that in the regime n ≥ 4m, Cn,m,σz is of constant or-
der as long as xmax, xmin are of constant order. We will use similar expressions similar to Cn,m,σz in
the analysis of the case n < 4m, the related details will be presented later according to requirements.

Establishing an upper bound on #»y⊤(Σo − Σ̂o)
#»y −Tr(Σ−1

o (Σo − Σ̂o)): The main challenge in
the analysis is the dependency of Σ̂o on #»y , which prevents us from directly applying concentration
inequalities to bound #»y⊤(Σo − Σ̂o)

#»y . To resolve this issue, we use a δ-net argument, as will be
clarified below. Consider a δ-net of the set Ck, denoted by Nδnet(Ck), with the choice of δ to be
discussed later. Define x̃o as the closest vector in Nδnet(Ck) to xo, i.e.,

x̃o = argminx∈Nδnet
(Ck)∥x̂o − x∥2. (7.13)

We will use the following notations for the rest of the section

Σ̃o = Σ(x̃o), X̃o = diag(x̃o), Σ̃o = Σ(x̃), X̃ = diag(x̃), x̃ ∈ Nδnet(Ck). (7.14)

Then in view of triangle inequality we get∣∣∣ #»y⊤(Σo − Σ̂o)
#»y − Tr(Σ−1

o (Σo − Σ̂o))
∣∣∣

≤
∣∣∣ #»y⊤(Σ̃o −Σo)

#»y − Tr(Σ−1
o (Σ̃o −Σo))

∣∣∣+ ∣∣∣ #»y⊤(Σ̃o − Σ̂o)
#»y − Tr(Σ−1

o (Σ̃o − Σ̂o))
∣∣∣ . (7.15)

We use an union bound argument to control the first term above, uniformly over all possible choices
of x̃ ∈ Nδnet(Ck). This is done in the following result.

Lemma 7.1. There exist constants c1, c2, c3, c4 > 0 such that the following holds with probability
1− Le−cn − e−c1Lk log((xmax−xmin)n/δnet)∣∣∣ #»y⊤(Σ̃o −Σo)

#»y − Tr(Σ−1
o (Σ̃o −Σo))

∣∣∣ ≤ b1
√

Z + b′1, for all x̃o ∈ Nδnet(Ck),
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where, with the notation in (7.12), b1, b
′
1,Z are defined as

b1 = c3

√
k log

(
(xmax − xmin)n

δnet

)
, b′1 = c4Cn,m,σzk log

(
(xmax − xmin)n

δnet

)
· x2max,

Z = Tr(Σ−1
o (Σ̃o −Σo)Σ

−1
o (Σ̃o −Σo)).

(7.16)

The following result controls the final term of (7.15).

Lemma 7.2. Let Cn,m,σz be as in (7.12) and denote b2 = (Cn,m,σz)
2mLδnet. There exist constants

c1, c2 > 0 such that the following holds with probability 1− Le−c1n − e−c2mL∣∣∣ #»y⊤(Σ̃o − Σ̂o)
#»y − Tr(Σ−1

o (Σ̃o − Σ̂o))
∣∣∣ ≤ b2.

Combining Lemma 7.2 with Lemma 7.1, in view of (7.15) we have∣∣∣ #»y⊤(Σo − Σ̂o)
#»y − Tr(Σ−1

o (Σo − Σ̂o))
∣∣∣ ≤ b1

√
Z + b′1 + b2 (7.17)

Establishing a lower bound on f(x̂o)−f(xo): To find the lower bound, we use the decomposition

f(x̂o)− f(xo) = f(x̂o)− f(x̃o) + f(x̃o)− f(xo), (7.18)

with x̃o as in (7.13). The first term, f(x̂o)− f(x̃o) can be bounded by Cn,m,σzxmaxnδnet using the
fact that x̃o is chosen to be at most δnet distance away from x̂o. We bound f(x̃o) − f(xo) using
the following result.

Lemma 7.3. Assume that σ2
zIm +AlX̃

2
oA

⊤
l and σ2

zIm +AlX
2
oA

⊤
l , 1 ≤ l ≤ L, are invertible. Then,

f(x̃o)− f(xo) ≥
1

2(1 + λ̃max)2
Tr
(
Σ−1

o (Σ̃o −Σo)Σ
−1
o (Σ̃o −Σo)

)
, (7.19)

where λ̃max > 0 is the maximum singular value of Σ
− 1

2
o (Σ̃o −Σo)Σ

− 1
2

o . Moreover, λ̃max ≤ Cn,m,σz

on the event S in (7.3).

The following result controls |f(x̂o)− f(x̃o)| for a given δnet.

Lemma 7.4. |f(x̂o)− f(x̃o)| ≤ Cn,m,σz ·xmaxnδnet ≪ 1 with probability 1−Le−cn for some c > 0.

Combining the above results, in view of (7.18) we have, with probability 1− L exp(−cn),

f(x̂o)− f(xo) ≥
Z

(Cn,m,σz)
2
− 1. (7.20)

Simplifying the quadratic inequality: Combining (7.20) and (7.17), in view of (7.11), we have

P

[
Z

(Cn,m,σz)
2
≤ b1

√
Z + b′1 + b2 + 1

]
≥ 1− e−c1Lk log((xmax−xmin)n/δnet) − Le−cn − exp (−cmL) .

(7.21)
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Rewrite the last inequality as az2− bz− c ≤ 0, with z =
√

Z , a = 1
(Cn,m,σz )

2 , b = b1, c = b′1+ b2+1.

As z =
√

Z > 0, z2 is smaller than the square of the positive root of az2−bz−c = 0, which implies

Z = z2 ≤

(
−b+

√
b2 + 4ac

2a

)2

≤

(
−b+

√
b2 + 4ac

2a

)(
b+

√
b2 + 4ac

2a

)
=

c

a
, (7.22)

where the second inequality followed as a, b, c > 0. Using the notations from, (7.12), Lemma 7.1
and Lemma 7.2 we get

Z =
b′1 + b2

a
= (Cn,m,σz)

2

(
c3k log

(
(xmax − xmin)n

δnet

)
· x2max + (Cn,m,σz)

2mLδnet

)
.

Choose δnet =
xmax
n5 and recall mL ≤ n4k log n from Definition 2.7. Then, from the last display we

use (7.21) to get for a constant C > 0

P
[
Z ≤ C · (Cn,m,σz)

2k log n
]
= 1−O

(
n−ckL + L exp(−cn) + 2 exp (−cmL)

)
. (7.23)

Finding a lowerbound for Z : In view of Definition 4.14, using the block structure of Σo, Σ̃o

given in (7.14), we have on the event S,

Z = Tr

[
Σ−1

o

(
Σ̃o −Σo

)
Σ−1

o

(
Σ̃o −Σo

)]
=

L∑
l=1

Tr
[
(Σl(xo)

−1(Σl(x̃o)− Σl(xo))Σl(xo)
−1(Σl(x̃o)− Σl(xo))

]
≥ 1

(Cn,m,σz)
2
(
σ2
z + x2maxEmax

)2 L∑
l=1

∥∥∥Al(X̂
2
o −X2

o )A
⊤
l

∥∥∥2
HS

,

(7.24)

where Cn,m,σz is as in (7.12). The lower bound on Z is completed with the following lower bound

on
∑L

l=1

∥∥∥Al(X̂
2
o −X2

o )A
⊤
l

∥∥∥2
HS

. The proof follows from Lemma 4.10 and is given in Subsection E.5.

Lemma 7.5. The following holds true with a probability 1− exp (−2k log n)−mL exp (−cn)

L∑
l=1

∥Al(X̃
2
o −X2

o )A
⊤
l ∥2HS

≥ 4m(m− 1)Lx2min∥x̃o − xo∥22 − 4Cx2max∥x̃o − xo∥2 logm
√
mLn

√
k log n− Cx4maxnk logm log n.

Final upper bound on ∥x̃o−xo∥22: We combine (7.24), (7.23), and Lemma 7.5 to summarize the
above in terms of the following quadratic inequality with respect to ∥x̃o − xo∥2, that holds with a

probability 1−O
(
n−ckL + L exp(−cn) + exp (−cmL)

)
a∥x̃o − xo∥22 − b∥x̃o − xo∥2 − d ≤ 0

a =
C1m(m− 1)Lx2min

(Cn,m,σz)
2(σ2

z + x2maxEmax)2
, b =

C2x
2
maxn logm

√
mLk log n

(Cn,m,σz)
2(σ2

z + x2maxEmax)2
,

d =
C3x

4
maxnk logm log n

C · (Cn,m,σz)
2(σ2

z + x2maxEmax)2
+ C · (Cn,m,σz)

2k log n.

(7.25)
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In view of an argument similar to (7.22) we have with a probability 1−O
(
n−ckL + L exp(−cn) + exp (−cmL)

)
1

n
∥x̃o − xo∥22 ≤

d

na
≤ C3x

4
max

x2min

k logm log n

m2L
+

(Cn,m,σz)
4(σ2

z + x2maxEmax)
2k log n

nm2L
. (7.26)

This implies, in view of 1
n∥x̃o − xo∥22 ≤ x2max,

E
[
1

n
∥x̃o − xo∥22

]
≤ C3x

4
max

x2min

k logm log n

m2L
+

(Cn,m,σz)
4(σ2

z + x2maxEmax)
2k log n

nm2L

+ C1x
2
max(n

−ckL + L exp(−cn) + exp (−cmL)). (7.27)

As ∥x̃o − x̂o∥2 ≤ δnet ≤ xmax
n5 from the definition in (7.13), we continue the last display to get

E
[
1

n
∥x̂o − xo∥22

]
≤ 2C4

{
x4max

x2min

k logm log n

m2L
+

(Cn,m,σz)
4(σ2

z + x2maxEmax)
2k log n

nm2L

+ x2max(n
−ckL + L exp(−cn) + exp (−cmL)) +

x2max

n10

}
.

(7.28)

Note by our assumption logm ≪ n. Therefore the first term has a slower growth rate compared
to the second term.

7.2 Proof of Theorem 2.7

We first consider the subcase n ≥ 4m, and the subcase n < 4m with σ2
z ≥ m. Then we have Cn,m,σz

is of a constant order and Emax = Θ(m+ n). In view of (7.28), the above implies

E
[
1

n
∥x̂o − xo∥22

]
≤ Cxmax,xmin

{
max(σ4

z ,m
2, n2)k log n

m2nL
+ n−ckL + L exp(−cn) + exp (−cmL) +

1

n10

}
,

for a constant C > 0 depending on xmin, xmax. We now focus on the remaining scenario of n < 4m
with σ2

z < m. Here, using the fact that the error is a non-decreasing function of σz (Definition 4.2),
we obtain the upper bound

R2(Ck,m, n, σz) ≤ R2(Ck,m, n,
√
m) = C

{
k log n

nL
+ n−ckL + L exp(−cn) + exp (−cmL) +

1

n10

}
,

for a constant C > 0 depending on xmin, xmax. The above coincides with our desired upper bound,
completing the result.
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Bellec, P. C., Lecué, G., and Tsybakov, A. B. (2018). Slope meets lasso: improved oracle bounds
and optimality. The Annals of Statistics, 46(6B):3603–3642.

Bianco, V., Memmolo, P., Leo, M., Montrésor, S., Distante, C., Paturzo, M., Picart, P., Javidi, B.,
and Ferraro, P. (2018). Strategies for reducing speckle noise in digital holography. Light: Science
& Applications, 7:1–16.

Bickel, P. J., Ritov, Y., and Tsybakov, A. B. (2009). Simultaneous analysis of Lasso and Dantzig
selector. The Annals of Statistics, 37(4):1705 – 1732.

Cai, T. T., Li, X., and Ma, Z. (2016). Optimal rates of convergence for noisy sparse phase retrieval
via thresholded Wirtinger flow. The Annals of Statistics, 44(5):2221 – 2251.

Candes, E. and Tao, T. (2005). Decoding by linear programming. IEEE Transactions on Informa-
tion Theory, 51(12):4203–4215.

Candes, E. J., Li, X., and Soltanolkotabi, M. (2015). Phase retrieval via wirtinger flow: Theory
and algorithms. IEEE Transactions on Information Theory, 61(4):1985–2007.

Candès, E. J. and Su, W. (2015). Slope is adaptive to unknown sparsity and asymptotically
minimax. CoRR.

Casella, G. and Berger, R. (2024). Statistical inference. Chapman and Hall/CRC.

Chen, X., Hou, Z., Metzler, C. A., Maleki, A., and Jalali, S. (2024). Bagged deep image prior for
recovering images in the presence of speckle noise. arXiv preprint arXiv:2402.15635.

Chen, X., Jana, S., Metzler, C. A., Maleki, A., and Jalali, S. (2025). Multilook coherent imaging:
Theoretical guarantees and algorithms. arXiv preprint arXiv:2505.23594.

31



Chen, Y. and Candès, E. J. (2017). Solving random quadratic systems of equations is nearly as easy
as solving linear systems. Communications on pure and applied mathematics, 70(5):822–883.

Chen, Y., Chi, Y., Fan, J., and Ma, C. (2019). Gradient descent with random initialization: Fast
global convergence for nonconvex phase retrieval. Mathematical Programming, 176(1):5–37.

Dasari, K., Anjaneyulu, L., Jayasri, P., and Prasad, A. (2015). Importance of speckle filtering in
image classification of sar data. In 2015 International Conference on Microwave, Optical and
Communication Engineering (ICMOCE), pages 349–352.

Davidson, K. and Szarek, S. (2001). Local operator theory, random matrices and Banach spaces,
page 317–366. North-Holland, Amsterdam.
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A Proofs of Examples of Section 2.1

Proof of Example 2.2

Note that for all x,y ∈ Rk we have ∥g(x) − g(y)∥2 ≤ M∥x − y∥2. If B1, ..., Br are the balls in a
ball of radius

√
k centered at 0 containing ε-covering of [0, 1]k, then g(C) is contained in a ball of

radius M
√
k. Hence, using Definition 4.6, we have Nε

(
g([0, 1]k)

)
≤
(
2M

√
k

ε + 1
)k

.

Proof of Example 2.3

We have

Sk = {x ∈ Rn | ∥x∥0 ≤ k} = ∪1≤i1≤···≤ik≤n

{
x ∈ Rn : xj = 0, j ̸= i1, · · · , ik

}
. (A.1)

Hence, Sk is a union of
(
n
k

)
k-dimensional subspaces

{
x ∈ Rn : xj = 0, j ̸= i1, · · · , ik

}
. According

to by Definition 4.6 the intersection of each of these subspaces and B2(1) can be covered by at most(
2
ε + 1

)k
balls of radius ε. Hence, Nε(C) ≤

(
n
k

) (
2
ε + 1

)k
. To obtain the lower bound we notice

that according to Definition 4.6, in order to cover one of the subspaces we need
(
1
ϵ

)k
. The proof

of the κ(C) = k is straightforward and is hence skipped.

Proof of Definition 2.4

f(θ) = Dθ is a σmax(D)-Lipchitz function of θ. Hence, combining Definition 2.3 with a proof similar
to the one presented for Definition 2.2 establishes the result.

Proof of Definition 2.5

Note C ⊂ D−1(Sk ∩B2(0, 1)). By direct calculation,

D−1 :=


1 1 · · · 1
0 1 · · · 1

0 0
. . . 1

0 0 · · · 1

 ,

Hence σmax(D
−1) ≤

∥∥D−1
∥∥
HS

=

√
n(n+1)

2 < n. So this is a special case of Definition 2.4.

Proof of definition 2.6

We showed σmin(D) ≥ 1
n in the proof of Definition 2.5. Hence, we have

σmin(D
M+1) ≥ (σmin(D))M+1 ≥

( 1
n

)M+1
.
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B The extension of Definition 2.8 to general a, b > 0

Suppose our signal class C ∈ Fa,b,k,n satisfies the polynomial complexity Nε(C) ≤
(
anb

ε

)k
for general

a, b > 0. Note that we can make the transform(
anb

ε

)k

=

(
(xmax − xmin)n

ε′

)k′

where k′ := bk and ε′ := (xmax−xmin)ε
1/b

a1/b
. Put C ′ = ε′

ε C ⊂ [x′min, x
′
max]

n where x′min = ε′

ε xmin and

x′max = ε′

ε xmax, and we have

Nε′(C′) = Nε(C) ≤

(
anb

ε

)k

=

(
(xmax − xmin)n

ε′

)k′

. (B.1)

This means C ∈ Fa,b,k,n if and only if C′ ∈ ε′

ε Fa0,b0,k′,n where a0 = xmax − xmin and b0 = 1. Hence

by Definition 2.8, we have when ε′ ∈ (0, 1/2), k′ ≤ n1−2ε′ , and max(σ4
z ,m

2, n2)k log n ≤ m2n1−ε′L

sup
C∈Fa,b,k,n

R2(C′,m, n, σz)

= sup
C′∈ ε′

ε
Fa0,b0,k

′,n

R2(C′,m, n, σz)

=Ωε′,x′
max,x

′
min

(
max(σ4

z ,m
2, n2)k log n

m2nL

)

=Ωε,xmax,xmin,a,b

(
max(σ4

z ,m
2, n2)k log n

m2nL

)
.

(B.2)

C Proof of auxiliary lemmas from Section 4

C.1 Proof of Lemma 4.14

In the following steps ⊗ denotes the Kronecker product. We have

Tr
[
Σ−1(Σ̃− Σ)Σ−1(Σ̃− Σ))

]
=Vec(Σ̃− Σ)⊤

[
Σ−1 ⊗ Σ−1

]
Vec(Σ̃− Σ)

≥
∥∥∥Vec(Σ̃− Σ)

∥∥∥2
2
λmin(Σ

−1 ⊗ Σ−1)

=∥Σ̃− Σ∥2HSλ
2
min(Σ

−1) = ∥Σ̃− Σ∥2HSλ
2
min(σ

2
zIm +AlX

2
oA

⊤
l )

=∥Σ̃− Σ∥2HS

[
σ2
z + λmin(AlX

2
oA

⊤
l )
]2

≥∥Σ̃− Σ∥2HS

(
σ2
z + x2minλmin(AlA

⊤
l )
)2

.
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On the other hand, using Σ̃− Σ = Σ(Σ−1 − Σ̃−1)Σ̃ = ΣA(X2 − X̃2)AT Σ̃, we have

∥Σ̃− Σ∥HS ≥λmin(Σ)λmin(Σ̃)
∥∥∥A(X̃2

o −X2
o )A

⊤
∥∥∥
HS

≥

∥∥∥A(X̃2 −X2)A⊤
∥∥∥
HS

λmax(σ2
zIm +AX2A⊤)λmax(σ2

zIm +AX̃2
oA

⊤)
≥

∥∥∥A(X̃2 −X2)A⊤
∥∥∥
HS(

σ2
z + x2maxλmax(AA⊤)

)2 .
This proves the lower bound. The proof of the upper bound is similar. Note that

Tr
[
Σ−1(Σ̃− Σ)Σ−1(Σ̃− Σ))

]
≤ ∥Σ̃− Σ∥2HS

(
σ2
z + x2maxλmax(AlA

⊤
l )
)2

, (C.1)

and

∥Σ̃− Σ∥HS ≤

∥∥∥A(X̃2 −X2)A⊤
∥∥∥
HS

λmin(σ2
zIm +AX2A⊤)λmin(σ2

zIm +AX̃2
oA

⊤)
≤

∥∥∥A(X̃2 −X2)A⊤
∥∥∥
HS(

σ2
z + x2minλmin(AA⊤)

)2 .
C.2 Proof of Definition 4.12

Define B = ATA. Then, we have

∥AD∥2HS = Tr(DATAD) = Tr(DBD) =
∑
i

D2
iiBii. (C.2)

Note that if ei is the unit vector with a one in the ith position and zeros elsewhere. , then

|Bii| = eTi Bei ≤ σmax(B) = σ2
max(A) (C.3)

Combining (C.2) and (C.3) establishes the desired result.

C.3 Proof of Definition 4.10

The proof closely follows that of (Zhou et al., 2024, Lemma 4 and 5). However, we obtain sharper
results with revised techniques, which we present here. For {Al}Ll=1 ∈ Rm×n, D ∈ RL×L, define

A =


A1 0 · · · 0
0 A2 · · · 0
0 0 · · · 0
0 0 · · · AL

 ∈ RmL×nL, D =


D 0 · · · 0
0 D · · · 0
0 0 · · · 0
0 0 · · · D

 ∈ RnL×nL. (C.4)

For 1 ≤ l ≤ L, let a⊤l,i denote the ith row of matrix Al. We have

∥ADA∥2HS =

L∑
l=1

∥AlDA⊤
l ∥2HS =

L∑
l=1

m∑
i=1

m∑
j=1

|a⊤l,iDal,j |2 =
L∑
l=1

∑
i̸=j

|a⊤l,iDal,j |2 +
L∑
l=1

m∑
i=1

|a⊤l,iDal,i|2.

(C.5)
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First note that by using the union bound and Definition 4.8, we have

P

 L∑
l=1

m∑
i=1

|a⊤l,iDal,i|2 > Lm
(
Tr(D) + t1

)2
≤LmP

(
|a⊤l,iDal,i|2 >

(
Tr(D) + t1

)2)
=LmP

(
|a⊤l,iDal,i| > Tr(D) + t1

)
≤ 2mL exp

−cmin

(
t21

K4∥d∥22
,

t1
K2∥d∥∞

) ,

(C.6)

where K the subgaussian norm of each element of al,i and K ∈ [1, 2] is a fixed number. For the
off-diagonal part of (C.5), first note that

E

 L∑
l=1

∑
i̸=j

|a⊤l,iDal,j |2
 = Lm(m− 1)

n∑
i=1

d2i = Lm(m− 1)∥d∥22. (C.7)

By Definition 4.7, there exists a constant C > 0 such that

P

(∣∣∣∣ L∑
l=1

∑
i̸=j

|a⊤l,iDal,j |2 − Lm(m− 1)

n∑
i=1

d2i

∣∣∣∣ > t

)

≤CP

(
C

∣∣∣∣ L∑
l=1

∑
i̸=j

|a⊤l,iDãl,j |2 − Lm(m− 1)
n∑

i=1

d2i

∣∣∣∣ > t

)

=CP

(
C

∣∣∣∣ L∑
l=1

m∑
i=1

a⊤l,iD

( m∑
i̸=j=1

ãl,j ã
⊤
l,j

)
Dal,i − Lm(m− 1)

n∑
i=1

d2i

∣∣∣∣ > t

)
,

(C.8)

where ãl,j ’s denote the independent copies of al,j ’s for 1 ≤ l ≤ L and 1 ≤ j ≤ m. Define Ãl as the
m× n Gaussian matrix whose rows are ã⊤l,1, . . . , ã

⊤
l,m, i.e.,

Ãl :=


ã⊤l,1
...

ã⊤l,m

 (C.9)

Also, let Ãl,\i denote the matrix that is constructed by removing the ith row of Ãl. Define

F :=


F1 0 · · · 0
0 F2 · · · 0
0 0 · · · 0
0 0 · · · FL


where

39



Fl :=


DÃ⊤

l,\1Ãl,\1D 0 . . . 0

0 DÃ⊤
l,\2Ãl,\2D . . . 0

0 0 . . . DÃ⊤
l,\mÃl,\mD

 .

and

#»v := [v⊤
1 , ...,v

⊤
L ], vl := [a⊤l,1, . . . ,a

⊤
l,m].

Let PÃ(·) := P
[
· | Ã1, ..., ÃL

]
. Note that for any event E , by definition PÃ(E) = E[1E | Ã]. It

follows that

P

(
C

∣∣∣∣ L∑
l=1

m∑
i=1

a⊤l,iD

( m∑
i̸=j=1

ãl,j ã
⊤
l,j

)
Dal,i − Lm(m− 1)

n∑
i=1

d2i

∣∣∣∣ > t2

)

=E

[
PÃ

(
C

∣∣∣∣ #»v⊤F #»v − E
[

#»v⊤F #»v |Ã
]∣∣∣∣ ≥ t2/2

)]
+ P

C

∣∣∣∣∣∣E
[

#»v⊤F #»v |Ã
]
− Lm(m− 1)

n∑
i=1

d2i

∣∣∣∣∣∣ ≥ t2/2

 .

(C.10)

Note that from Definition 4.8 (with fixed Ã) we have

PÃ

(
C

∣∣∣∣ #»v⊤F #»v − E
[

#»v⊤F #»v |Ã
]∣∣∣∣ ≥ t/2

)
≤ 2 exp

−cmin

(
t2

4C2K4∥F∥2HS

,
t

2CK2∥F∥2

) .

(C.11)

Define the event Ẽmaxsing :=
⋂L

l=1

⋂m
i=1

{
σmax(Ãl,\i) ≤ 3

2(
√
m+

√
n)
}
, and define Emax = 9

4(
√
m+

√
n)2. By Definition 4.9, we have that P(Emaxsing) ≥ 1 − mL exp(−cn). Restricted to the event

Ẽmaxsing, we have

∥F∥2 = max
1≤l≤L

max
1≤i≤m

σmax

(
DÃ⊤

l,\iÃl,\iD
)
≤ Emax ∥d∥2∞ . (C.12)

and

∥F∥2HS =

L∑
l=1

∥Fl∥2HS

=

L∑
l=1

m∑
i=1

∥∥∥DÃ⊤
l,\iÃl,\iD

∥∥∥2
HS

=
L∑
l=1

m∑
i=1

Tr
[
DÃ⊤

l,\iÃl,\iDDÃ⊤
l,\iÃl,\iD

]
=

L∑
l=1

m∑
i=1

Tr
[
Ã⊤

l,\iÃl,\iDDÃ⊤
l,\iÃl,\iDD

]
(a)

≤
L∑
l=1

m∑
i=1

(
∑
p

σp(Ã
⊤
l,\iÃl,\iDD))2 =

L∑
l=1

m∑
i=1

∥∥∥Ã⊤
l,\iÃl,\iDD

∥∥∥2
HS

≤ Lm [Emax]
2 ∥d2∥22,

(C.13)
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where to obtain inequality (a) we have used (4.13) and to obtain the last inequality we have used
Lemma 4.12. Combining, (C.11), (C.12), and (C.13) we have

E

[
PÃ

(
C

∣∣∣∣ #»v⊤F #»v − E
[

#»v⊤F #»v |Ã
]∣∣∣∣ ≥ t2/2

)]

≤2 exp

−cmin

(
4t22

81C2K4∥d2∥22mL(
√
n+

√
m)4

,
2t2

9CK2∥d∥2∞(
√
n+

√
m)2

) .

(C.14)

Now note that

P

C

∣∣∣∣∣∣E
[

#»v⊤F #»v |Ã
]
− Lm(m− 1)

n∑
i=1

d2i

∣∣∣∣∣∣ ≥ t/2


=P

C

∣∣∣∣∣∣∣
 L∑

l=1

m∑
i=1

m∑
j ̸=i,j=1

ã⊤
l,jD

2ãl,j

− Lm(m− 1)

n∑
i=1

d2i

∣∣∣∣∣∣∣ ≥ t/2


(a)

≤mP

∣∣∣∣∣∣
L∑
l=1

m∑
j ̸=i0,j=1

ã⊤
l,jD

2ãl,j − L(m− 1)
n∑

i=1

d2i

∣∣∣∣∣∣ ≥ t/2m


(b)

≤2m exp

−cmin

 t2

4K4m2
∥∥∥D2

(m−1)L

∥∥∥2
HS

,
t

2K2m
∥∥∥D2

(m−1)L

∥∥∥
2




≤2m exp

−cmin

(
t2

4K4Lm3∥d2∥22
,

t

2K2m∥d2∥∞

) ,

(C.15)

where to obtain inequality (a) we have used the union bound (the distribution for
∑m

j ̸=i0,j=1 ã
⊤
l,jD

2ãl,j

is the same for all 1 ≤ i0 ≤ m), and to obtain (b) we have used Definition 4.8 for the L(m− 1)n×
L(m− 1)n matrix

D2
(m−1)L :=


D2 0 · · · 0
0 D2 · · · 0
0 0 · · · 0
0 0 · · · D2


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Finally, combining (C.6),(C.8), (C.10), (C.14), and (C.15) we have that

P


 L∑

l=1

∥AlDA⊤
l ∥2HS > Lm

(
Tr(D) + t1

)2
+ Lm(m− 1)∥d∥22 + t2

 ∩ Ẽmaxsing


≤P

 L∑
l=1

m∑
i=1

|a⊤l,iDal,i|2 > Lm
(
Tr(D) + t1

)2
+ P


 ∣∣∣∣∣∣

L∑
l=1

∑
i̸=j

|a⊤l,iDal,j |2 − Lm(m− 1)
n∑

i=1

d2i

∣∣∣∣∣∣ > t2

 ∩ Ẽmaxsing


≤2mL exp

−cmin

(
t21

K4∥d∥22
,

t1
K2∥d∥∞

)
+ 2C exp

−cmin

(
4t22

81C2K4∥d2∥22mL(
√
n+

√
m)4

,
2t2

9CK2∥d∥2∞(
√
n+

√
m)2

)
+ 2m exp

−cmin

(
t22

4K4Lm3∥d2∥22
,

t2
2K2Lm2∥d2∥∞

) ,

for some constants c and C. On the other hand,

P


 L∑

l=1

∥AlDA⊤
l ∥2HS < Lm(m− 1)∥d∥22 − t

 ∩ Ẽmaxsing


≤P

([ L∑
l=1

∑
i̸=j

|a⊤l,iDal,j |2 − Lm(m− 1)

n∑
i=1

d2i < −t

]
∩ Ẽmaxsing

)

≤P

([∣∣∣∣ L∑
l=1

∑
i̸=j

|a⊤l,iDal,j |2 − Lm(m− 1)
n∑

i=1

d2i

∣∣∣∣ > t

]
∩ Ẽmaxsing

)

≤2C exp

−cmin

(
4t2

81C2K4∥d2∥22mL(
√
n+

√
m)4

,
2t

9CK2∥d∥2∞(
√
n+

√
m)2

)
+ 2m exp

−cmin

(
t2

4K4Lm3∥d2∥22
,

t

2K2Lm2∥d2∥∞

) ,

for some constants c and C.
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C.4 Proof of Definition 4.1 and Definition 4.2

Proof of Definition 4.1. Let m < m′ be two positive integers and consider two scenarios of our
speckle noise model:

yl =AlXowl + zl, for l = 1, . . . , L.

y′
l =A′

lXow
′
l + z′

l, for l = 1, . . . , L.
(C.16)

where we have independent wl ∼ N (0, In), w
′
l ∼ N (0, In), zl ∼ N (0, σzIm), and z′

l ∼ N (0, σzIm′).
We would like to show

R2(Ck,m′, n, σz) ≤ R2(Ck,m, n, σz). (C.17)

Indeed, for each 1 ≤ l ≤ L, we look at each component of vectors yl and y′
l: For 1 ≤ i ≤ m and

1 ≤ i′ ≤ m′,

yl,i =
∑
j

Al,ijxo,jwl,j + zl,i, (C.18)

y′l,i′ =
∑
j

A′
l,i′jxo,jw

′
l,j + z′l,i′ . (C.19)

For 1 ≤ l ≤ L, let y′
l|m denote the truncation of them′-dimensional vector on its firstm components.

Let Em denote the collection of all estimators for the first scenario, let E ′
m′ denote the collection

of all estimators for the second scenario, and let E ′
m ⊂ E ′

m′ denote the subcollection of estimators
for the second scenario that only use the information of y′

l|m for 1 ≤ l ≤ L.
In these two scenarios, we construct estimators x̂(y1, ...,yL) and x̂′(y′

1, ...,y
′
L), and we can

always view x̂(y1, ...,yL) as a special case of x̂′(y′
1, ...,y

′
L) where we only use the information of

the truncations y′
1|m, ...,y′

L|m. Therefore

inf
x̂∈Em

sup
xo∈Ck

E
[
∥x̂(y1, . . . ,yL)− xo∥22

]
= inf

x̂′∈E ′
m

sup
xo∈Ck

E
[
∥x̂′(y′

1|m, . . . ,y′
L|m)− xo∥22

]
≥ inf

x̂′∈E ′
m′

sup
xo∈Ck

E
[
∥x̂′(y′

1, . . . ,y
′
L)− xo∥22

]
,

(C.20)

and (C.17) follows.

Proof of Definition 4.2. The argument here follows closely the proof of (Malekian et al., 2025,
Lemma 3.1). Consider two scenarios of our spec6 e noise model:

yl =AlXowl + zl, for l = 1, . . . , L.

y′
l =AlXow

′
l + z′

l, for l = 1, . . . , L.
(C.21)

where we have independent wl ∼ N (0, In), w
′
l ∼ N (0, In), zl ∼ N (0, σzIm), and z′

l ∼ N (0, σ′
zIm)

with σ′
z > σz > 0. We would like to show

R2(Ck,m, n, σz) ≤ R2(Ck,m, n, σ′
z). (C.22)
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Let x̂(y′
1, ...,y

′
L) be any estimator for x̂o with observations y′

1, ...,y
′
L. Note that conditioning on

A1, ..., AL, we have

(y′
1, ...,y

′
L)

d
= (y1 + u1, ...,yL + uL), (C.23)

where u1, ...,uL are i.i.d. N (0,
√
σ′2
z − σ2

z · Im). It follows that

E

∥∥x̂(y′
1, ...,y

′
L)− xo

∥∥2
n

 = E

∥∥x̂(y1 + u1, ...,yL + uL)− xo

∥∥2
n

 . (C.24)

Furthermore, if we let EY denote the conditional expectation EY [·] := E[· | A1, ..., AL,y1, ...,yL],
then by the tower rule and Jensen’s inequality we have

E
[
∥x̂(y1 + u1, . . . ,yL + uL)− xo∥22

]
=E

[
EY ∥x̂(y1 + u1, . . . ,yL + uL)− xo∥22

]
≥E

[
∥EY

[
x̂(y1 + u1, . . . ,yL + uL)

]
− xo∥22

]
.

(C.25)

It follows that

sup
xo∈Ck

E
[
∥x̂(y1 + u1, . . . ,yL + uL)− xo∥22

]
≥ sup

xo∈Ck
E
[
∥EY

[
x̂(y1 + u1, . . . ,yL + uL)

]
− xo∥22

]
.

(C.26)

Now, treating ẑo(y1, . . . ,yL) := EY

[
x̂(y1 + u1, . . . ,yL + uL)

]
as an estimator of xo using only

the information of y1, ...,yL, we have for every estimator ẑ(y′
1, ...,y

′
L) of the second scenario

sup
xo∈Ck

E
[
∥ẑ(y′

1, . . . ,y
′
L)− xo∥22

]
≥ sup

xo∈Ck
E
[
∥ẑo(y1, . . . ,yL)− xo∥22

]
≥ inf

ẑ
sup

xo∈Ck
E
[
∥ẑ(y1, . . . ,yL)− xo∥22

]
.

(C.27)

Therefore

R2(Ck,m, n, σ′
z)

=
1

n
inf
ẑ

sup
xo∈Ck

E
[
∥ẑ(y′

1, . . . ,y
′
L)− xo∥22

]
≥ 1

n
inf
ẑ

sup
xo∈Ck

E
[
∥ẑ(y1, . . . ,yL)− xo∥22

]
≥ R2(Ck,m, n, σz).

(C.28)

D Proofs of results of Section 5

D.1 Proof of Definition 5.1

We first establish the lower bound. Let x ∈ Ssep. Consider all vectors obtained from x by selecting
k/4 intervals and flip the values of the entries whose indices belong to those intervals; if the value
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is x̄ + δr switch that to x̄, and if the value is x̄ switch that to x̄ + δr. Denote the collection of all
such vectors by B(x). Note that if ∪x∈SsepB(x) does not cover X finite, it means that there exists
another vector x ∈ X finite that is different from all elements of Ssep in at least k/4 intervals, which
is in contradiction with the fact that Ssep includes all such vectors. Hence, we can conclude that

X finite ⊂ ∪x∈SsepB(x). (D.1)

Note that

B(x) =

(
Ndiv

k/4

)
(D.2)

Combining (5.12), (D.1), and (D.2) and assuming that r is the size of Ssep we have

r ≥
(
Ndiv
k

)(Ndiv
k/4

) . (D.3)

Using the following classical bounds for
(
n
k

)
(
n

k

)k

≤
(
n

k

)
≤
(
en

k

)k

, (D.4)

we have

r ≥

(Ndiv
k/2

)(Ndiv
k/4

) ≥
(Ndiv
k/2 )

k
2

( eNdiv
k/4 )

k
4

= (
Ndiv

ek
)
k
4 . (D.5)

We get the desired upper bound by combining (5.12) and (D.4) with r ≤ |X finite|, as Ssep ⊂ X finite.

D.2 Proof of Definition 5.2

As we discussed in Section 5.3 we have

Px ∼ ⊗L
l=1N(0,Σ−1

l (x)) = N(0,Σ−1(x)) (D.6)

where
Σl = Σl(x) := (σ2

zIm +AlX
2A⊤

l )
−1 (D.7)

and
Σ(x) := diag

(
Σ1(x), ...,ΣL(x)

)
. (D.8)

Using Definition 4.4, we condition on A1, ..., AL, with Λ1 = Σ(xi)
−1,Λ2 = Σ(xj)

−1, to get

KL(Pxi ∥ Pxj ) =
1

2

[
log

detΣ(xj)
−1

detΣ(xi)−1
−mL+Tr

(
Σ(xj)Σ(xi)

−1
)]

=
1

2

[
log detΣ(xj)

−1Σ(xi) + Tr
([

Σ(xj)−Σ(xi)
]
Σ(xi)

−1
)]

=
1

2

[
− log detΣ(xj)Σ(xi)

−1 +Tr
([

Σ(xj)−Σ(xi)
]
Σ(xi)

−1
)]

.

(D.9)
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In order to find an upper bound for the KL divergence, we use the mean value theorem. By applying
the mean value theorem to log detΣ(xj)Σ(xi)

−1 and defining λq as the q
th eigenvalue of the matrix

Σ(xi)
− 1

2

(
Σ(xj)−Σ(xi)

)
Σ(xi)

− 1
2 , we obtain

− log detΣ(xj)Σ(xi)
−1 = − log det

[
Σ(xi)

−1/2Σ(xj)Σ(xi)
−1/2

]
=− log det

[
Σ(xi)

− 1
2
(
Σ(xj)−Σ(xi)

)
Σ(xi)

− 1
2 + ImL

]
=−

mL∑
i=1

log(1 + λq)
(a)
= −

mL∑
i=1

(
λq −

λ2
q

2(1 + λ′
q)

2

)

=− Tr
(
Σ(xi)

− 1
2
(
Σ(xj)−Σ(xi)

)
Σ(xi)

− 1
2

)
+

mL∑
i=1

λ2
q

2(1 + λ′
q)

2
,

(D.10)

where to obtain (a) we have used the Taylor expansion for log(1+λq), and defined λ′
q as a point be-

tween zero and λq. Note that this eigenvalue can be negative. Since we have Tr
([

Σ(xj)−Σ(xi)
]
Σ(xi)

−1
)
=

Tr
(
Σ(xi)

− 1
2

(
Σ(xj)−Σ(xi)

)
Σ(xi)

− 1
2

)
, by combining (D.9) and (D.10) we obtain

KL(Pxi ∥ Pxj ) =

mL∑
i=1

λ2
q

4(1 + λ′
q)

2
. (D.11)

Since λ′
q can be a negative number, in order to obtain a useful upper bound for KL(Pxi ∥ Pxj ) as

is required by Fano’s inequality we need to find an upper bound for |λ′
q|. But since this quantity is

between zero and λq we can bound |λq| instead. We have

∣∣∣∣λq

(
Σ(xi)

− 1
2
(
Σ(xj)−Σ(xi)

)
Σ(xi)

− 1
2

)∣∣∣∣
≤
σmax

(
Σ(xj)−Σ(xi)

)
σmin(Σ(xi))

(a)

≤
σmax

(
Σ(xj)

−1 −Σ(xi)
−1
)

σmin(Σ(xi))σmin

(
Σ(xi)−1

)
σmin

(
Σ(xj)−1

)
=
max1≤l≤L

[
σmax(σ

2
zIm +AlX

2
i A

⊤
l )
]
max1≤l≤L

[
σmax(AlX

2
i A

⊤
l −AlX

2
jA

⊤
l )
]

σmin

(
Σ(xi)−1

)
σmin

(
Σ(xj)−1

) .

≤

[
σ2
z + x2maxmax1≤l≤L λmax(AlA

⊤
l )
]
max1≤l≤L λmax(AlA

⊤
l )∥xi

2 − x2
j∥∞(

σ2
z + x2minmin1≤l≤L λmin(AlA

⊤
l )
)2 ,

(D.12)

where (a) follows from Definition 4.11.
As we discussed before we would like to use our upper bounds for KL(Pxi ∥ Pxj ) for the

Fano’s inequality. Hence, in the rest of the proof, we assume that xi,xj ∈ Ssep. This implies that
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∥xi − xj∥∞ ≤ δr. Hence, we can simplify (D.12) in the following way∣∣∣∣λq

(
Σ(xi)

− 1
2
(
Σ(xj)−Σ(xi)

)
Σ(xi)

− 1
2

)∣∣∣∣ ≤
[
σ2
z + x2max · Emax

]
· Emax(

σ2
z + x2min · Emin

)2 · 2xmax∥xi − xj∥∞ (D.13)

≤
[
σ2
z + x2max · Emax

]
· Emax(

σ2
z + x2min · Emin

)2 · 2xmaxδr. (D.14)

Hence, choosing δr such that
[σ2

z+x2
max·Emax]·Emax

(σ2
z+x2

min·Emin)
2 · 2xmaxδr <

1
2 , we use (D.11) to get

KL(Pi ∥ Pj) ≤
mL∑
i=1

λ2
q

4(1 + λ′
q)

2
≤

mL∑
i=1

λ2
q

=Tr
(
Σ(xi)

−1
[
Σ(xj)−Σ(xi)

]
Σ(xi)

−1
[
Σ(xj)−Σ(xi)

])
≤

(
σ2
z + x2maxmax1≤l≤L λmax(AlA

⊤
l )
)2

(
σ2
z + x2minmin1≤l≤L λmin(AlA

⊤
l )
)4 L∑

l=1

∥∥∥Al(X
2
i −X2

j )A
⊤
l

∥∥∥2
HS

,

(D.15)

where to obtain the last inequality we have used Lemma 4.14.

E Proof of technical results

E.1 Proof of Lemma 7.1

As stated from the beginning of Subsection 7.1, without loss of generality, we may assume C ∈
Fa,b,k,n with a = xmax − xmin and b = 1. Namely

|Nδnet(Ck)| ≤
(
(xmax − xmin)n

δnet

)k

. (E.1)

Fix a general x̃o ∈ Nδnet(Ck). For 1 ≤ l ≤ L, define the matrices

Aσz ,l = [σzIm AlXo] ∈ Rm×(m+n), Bl = A⊤
σz ,l

(
Σl(x̃o)− Σl(xo)

)
Aσz ,l ∈ R(m+n)×(m+n),

Aσz = diag(Aσz ,1, . . . , Aσz ,L) ∈ RmL×(m+n)L, B = diag(B1, . . . , BL) ∈ RL(m+n)×L(m+n).
(E.2)

In view of the notations (7.6) and (7.14), the above display provides us with the following identities

AσzA
⊤
σz

= Σ−1
o , B = A⊤

σz

(
Σ̃o −Σo

)
Aσz . (E.3)

Define the L(m+ n) dimensional vector, #»w⊤ = [z⊤
1 /σz,w

⊤
1 , . . . ,z

⊤
L /σz,w

⊤
L ]. It follows that

#»y⊤
(
Σ̃o −Σo

)
#»y = #»w⊤B #»w. (E.4)

Then, conditioning on A1, ..., AL, by the Hanson-Wright inequality (Definition 4.8), we have

P
[
| #»w⊤B #»w − Tr(Σ−1

o (Σ̃o −Σo))| > t
]
≤ 2 exp

−cmin

(
t2

4∥B∥2HS

,
t

2∥B∥2

) . (E.5)
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We simplify the above using upper bounds on ∥B∥HS, ∥B∥2. In view of (7.12) we bound ∥B∥2 as

∥B∥2 = max
(
∥Bl∥2

)L
l=1

≤
(
σ2
z + x2max max

1≤l≤L
σmax(Al)

2

)
max
1≤l≤L

σmax

(
Σl(x̃o)− Σl(xo)

)
≤
(
σ2
z + x2maxEmax

)
max
1≤l≤L

(σmax(Σl(x̃o)) + σmax(Σl(xo)))

=
(
σ2
z + x2maxEmax

)
max
1≤l≤L

({σmin(Σl(x̃o)
−1)}−1 + {σmin(Σl(xo)

−1)}−1) ≤ Cn,m,σz ,

(E.6)

where the last inequality followed by noting that on the event S in (7.3) we have for each x = xo, x̃o

σmin(Σl(x)
−1) = σ2

z + σmin(AlX
2A⊤

l ) ≥ σ2
z + x2minσmin(AlA

⊤
l ) ≥ σ2

z + x2minEmin, 1 ≤ l ≤ L.

Next, using the identity ∥B∥2HS = Tr(B2) we get

∥B∥2HS = Tr

[
Σ−1

o

(
Σ̃o −Σo

)
Σ−1

o

(
Σ̃o −Σo

)]
. (E.7)

which we have defined as Z . Hence, conditioned on the event S in (7.3), we simplify (E.5) to get

P
[
| #»w⊤B #»w − Tr(Σ−1

o (Σ̃o −Σo))| > t
∣∣∣S] ≤ 2 exp

−cmin

(
t2

4Z
,

t

2Cn,m,σz

) . (E.8)

To extend the above probability statement for all possible choice of x̃o ∈ Nδnet(Ck) we use an union
bound argument.

The above implies that by choosing t = b1
√

Z + b′1 as defined in the result statement, we get

P
[
| #»w⊤B #»w − Tr(Σ−1

o (Σ̃o −Σo))| > t for all x̃o ∈ Nδnet(Ck)
∣∣∣S]

≤ ek log(3xmax
√
n/δnet) exp

−cmin

{
b21
4
,

b′1
2Cn,m,σz

} ≤ e−c̃k log(3xmax
√
n/δnet), (E.9)

for some constant c̃ > 0. In view of (7.3) and P[A] ≤ P[A|S] + P[Sc], the above display implies

P
[
| #»w⊤B #»w − Tr(Σ−1

o (Σ̃o −Σo))| > t for all x̃o ∈ Nδnet(Ck)
]
≤ e

−c̃k log
(

3xmax
√
n

δnet

)
+ Le−cn.

E.2 Proof of Lemma 7.2

Our entire argument is conditioning on the high-probability event S in (7.3). We will explain at
the end of the section how the conditioning is removed to get the final result. In view of Lemma
4.11 we first note that

σmax(Σ̃o − Σ̂o) ≤
σmax

(
Σ̂−1

o − Σ̃−1
o

)
σmin

(
Σ̂−1

o

)
σmin

(
Σ̃−1

o

) ≤
max1≤l≤L

[
σmax(Al(X̂

2
o − X̃2

o )A
⊤
l )
]

σmin

(
Σ̂−1

o

)
σmin

(
Σ̃−1

o

)
≤

max1≤l≤L λmax(AlA
⊤
l )∥x̂2

o − x̃2
o∥∞(

σ2
z + x2minmin1≤l≤L λmin(AlA

⊤
l )
)2 ≤ 2Emaxxmaxδnet

(σ2
z + x2min · Emin)2

. (E.10)
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In view of σmax(Σ
−1
o ) ≤ σ2

z + x2maxEmax, for any 1 ≤ q ≤ mL we use the last display to get

∣∣∣λq(Σ
−1
o (Σ̂o − Σ̃o))

∣∣∣ ≤ σmax

(
Σ̃o − Σ̂o

)
σmin(Σo)

≤ [σ2
z + x2maxEmax] · Emax(
σ2
z + x2min · Emin

)2 · 2xmaxδnet, (E.11)

with probability 1−Le−cn. Summing up over 1 ≤ q ≤ mL and using triangular inequality, we have∣∣∣Tr[Σ−1
o (Σ̂o − Σ̃o)]

∣∣∣ ≤ mL · [σ
2
z + x2max · Emax] · Emax(
σ2
z + x2min · Emin

)2 · 2xmaxδnet. (E.12)

To bound the term | #»y⊤(Σ̂o − Σ̃o)
#»y |, we again use (E.10) to get∣∣∣∣ #»y⊤

(
Σ̂o − Σ̃o

)
#»y

∣∣∣∣ ≤ σmax

(
Σ̂o − Σ̃o

)
#»y⊤ #»y ≤ 2Emaxxmaxδnet(

σ2
z + x2min · Emin

)2 #»y⊤ #»y . (E.13)

We use the following lemma to bound #»y⊤ #»y . A proof is provided at the end of this section.

Lemma E.1. For t > 0, we have

P
(

#»y⊤ #»y ≥ mL
[
Emaxx

2
max + σ2

z

]
+ t

)

≤ 2 exp

−cmin

 t2

4mL
(
σ2
z + x2max · Emax

)2 , t

2
(
σ2
z + x2max · Emax

)

+ Le−cn.

(E.14)

We choose t = CmL
[
σ2
z + x2max · Emax

]
for a large constant C > 0. Then, in view of Lemma

E.1, we we continue (E.13) to get that with probability 1−Le−cn−exp (−cmL) the following holds∣∣∣∣ #»y⊤
(
Σ̂o − Σ̃o

)
#»y

∣∣∣∣ ≤ 2xmaxδnetEmax(
σ2
z + x2min · Emin

)2 · 2mL
[
σ2
z + x2max · Emax

]
. (E.15)

Together with (E.12), we conclude that with probability 1− Le−n − e−cmL that

∣∣∣ #»y⊤(Σo − Σ̂o)
#»y − Tr(Σ−1

o (Σo − Σ̂o))
∣∣∣ ≤ 2mLxmaxδnet ·

[σ2
z + x2max · Emax] · Emax(
σ2
z + x2min · Emin

)2 . (E.16)

As mLxmaxδnet · [σ2
z+x2

max·Emax]·Emax

(σ2
z+x2

min·Emin)
2 ≤ mLδnet(Cn,m,σz)

2 we get the desired result.

Proof of Definition E.1. Define

Ml = A⊤
σz ,lAσz ,l, l ∈ [L], M = diag(M1, . . . ,ML) ∈ RL(m+n)×L(m+n)

#»w⊤ = [z⊤
1 /σz,w

⊤
1 , . . . ,z

⊤
L /σz,w

⊤
L ]

(E.17)

Then we can write #»y⊤ #»y = #»w⊤M #»w⊤. To obtain a tail bound, we first recall #»y = [y1, . . . ,yL], and
observe that by conditioning on the event S as in (7.3), we have for each l = 1, . . . , L,

E[y⊤
l yl | S] = Tr

[
XoA

⊤
l AlXo

]
+mσ2

z ≤ m
(
λmax(A

⊤
l Al)x

2
max + σ2

z

)
≤ m

(
Emaxx

2
max + σ2

z

)
.

(E.18)
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Then, by the Hanson-Wright inequality (Definition 4.8), we have conditioned on the event S that,

P
(

#»y⊤ #»y > mL
(
Emaxx

2
max + σ2

z

)
+ t

∣∣∣∣S) ≤2 exp

−cmin

(
t2

∥M∥2HS

,
t

∥M∥2

) , (E.19)

for some constant c > 0. To bound the terms ∥M∥HS, ∥M∥2, we note that on the event S,

∥M∥2 = max
1≤l≤L

∥Ml∥2 ≤ σ2
z + x2max max

1≤l≤m
λmax(A

⊤
l Al) ≤ σ2

z + x2maxEmax,

∥M∥2HS =
L∑
l=1

Tr(M2
l ) ≤

L∑
l=1

m∑
i=1

λ2
i (Ml) ≤

L∑
l=1

mλ2
max(Ml) ≤ Lm

(
σ2
z + x2maxEmax

)2
,

(E.20)

where the inequality
∑L

l=1Tr(M
2
l ) ≤

∑L
l=1

∑m
i=1 λ

2
i (Ml) follows from the fact that rank(Ml) = m

and there are at most m nonzero eigenvalues. Finally we remove the condition on S by using
P[A] ≤ P[A|S] + P[Sc] with P[Sc] ≤ Le−cn from (7.4) to get the desired result.

E.3 Proof of Lemma 7.3

The proof here is the similar to that of (Zhou et al., 2022, Lemma VIII.4) with minor differences,
which we point out below. Recall that,

f(x̃o)− f(xo) =

[
− log det Σ̃o +Tr

(
Σ̃oΣ

−1
o

)]
−
[
− log detΣo +Tr

(
ΣoΣ

−1
o

)]
(E.21)

=−
[
log det Σ̃o − log detΣo

]
+Tr([Σ̃o −Σo]Σ

−1
o ) (E.22)

For 1 ≤ q ≤ mL, let λq denote the q-th eigenvalue ofΣ
− 1

2
o

(
Σ̃o −Σo

)
Σ

− 1
2

o , and λmax = max1≤q≤mL |λq|.
Following the proof strategy of (Zhou et al., 2022, Lemma VIII.4) we can show that

log
det Σ̃o

detΣo
≤ Tr

(
Σ

− 1
2

o

(
Σ̃o −Σo

)
Σ

− 1
2

o

)
−

Tr
(
Σ−1

o (Σ̃o −Σo)Σ
−1
o (Σ̃o −Σo)

)
2(1 + λ̃max)2

. (E.23)

We will use the following inequalities to bound λ̃max, on the event S.

• ∥Σ−1
o ∥2 = max1≤l≤L ∥AlX

2
oA

⊤
l ∥2 ≤ σ2

z + x2maxmax1≤l≤L σmax(AlA
⊤
l ) ≤ σ2

z + x2maxn.

• Using ∥E∥−1 = σmin(E
−1) for any invertible matrix E, for a constant C, we get

∥Σo∥−1 = σ2
z + min

1≤l≤L
σmin(AlX

2
oA

⊤
l ) ≥ σ2

z + x2min min
1≤l≤L

σmin(AlA
⊤
l ) ≥ σ2

z + x2minEmin

∥Σ̃o∥−1 = σ2
z + min

1≤l≤L
σmin(AlX̃

2
oA

⊤
l ) ≥ σ2

z + x2min min
1≤l≤L

σmin(AlA
⊤
l ) ≥ σ2

z + x2minEmin.

Using λ̃max = ∥Σ− 1
2

o (Σ̃o −Σo)Σ
− 1

2
o ∥2 ≤ ∥Σ̃o −Σo∥2∥Σ

− 1
2

o ∥22 = ∥Σ̃o −Σo∥2∥Σ−1
o ∥2, we get

λ̃max ≤ (∥Σ̃o∥2 + ∥Σo∥2)∥Σ−1
o ∥2 ≤ 2

σ2
z + x2maxEmax

σ2
z + x2minEmin

≤ Cn,m,σz . (E.24)
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E.4 Proof of Lemma 7.4

For the first term f(x̂o)−f(x̃o), using an argument similar to the proof of Lemma 7.3 we can show∣∣∣f(x̃o)− f(x̂o)
∣∣∣ ≤ 1

2(1− |λmax|)2
Tr
(
Σ̂−1

o (Σ̃o − Σ̂o)Σ̂
−1
o (Σ̃o − Σ̂o)

)
(E.25)

where |λmax| is the largest absolute value of eigenvalues of Σ̂
− 1

2
o (Σ̃o− Σ̂o)Σ̂

− 1
2

o and with probability
at least 1− Le−cn. Choosing δnet =

xmax
n5 , and noting that |λmax| ≤ ∥Σ̃o − Σ̂o∥2∥Σ̂−1

o ∥2, we get

|λmax|
(a)

≤ σmax(Σ̂
−1
o − Σ̃−1

o )∥Σ̂−1
o ∥2

σmin(Σ̂
−1
o )σmin(Σ̃

−1
o )

≤ σ2
z + x2max · Emax

σ2
z + x2min · Emin

2 max
1≤l≤L

σmax

(
Al(X̃

2
o − X̂2

o )A
⊤
l

)
≤ Cn,m,σz · xmaxnδnet,≪ 1

where in (a) we have used Definition 4.11.

E.5 Proof of Lemma 7.5

Pick an x̃o ∈ Nδnet(Ck). Define d = x̃2
o − x2

o and D = diag(d). In view of the above, we have

∥d∥∞ ≤ x2max, ∥d2∥2 ≤ 4x2max∥x̃o − xo∥2. (E.26)

Then using (4.12), as n ≥ 4m, conditional on the event S in (7.3), we get

P


 L∑

l=1

∥Al(X̃
2
o −X2

o )A
⊤
l ∥2HS < Lm(m− 1)

n∑
i=1

d2i − t

∣∣∣∣∣S


≤ exp

−c ·min

(
t2

K4x4max∥x̃o − xo∥22mLn2
,

t

K2x2maxn

)
+ 2m exp

−cmin

(
t2

K4Lm3x4max∥x̃o − xo∥22
,

t

K2mx2max

) .

(E.27)

Choose to = C logm

(
x2max∥x̃o − xo∥2n

√
mL
√
k log (xmax−xmin)n

δnet
+ x4maxnk log

(xmax−xmin)n
δnet

)
for a

large constant C to be chosen later. Then, the above display implies for a large constant C1

P


 L∑

l=1

∥Al(X̃
2
o −X2

o )A
⊤
l ∥2HS < Lm(m− 1)

n∑
i=1

d2i − t0

∣∣∣∣∣S
 ≤ e

−C1 log
(xmax−xmin)n

δnet

Then using an union bound over the total possible choices of x̃o ∈ Nδnet(Ck), with |Nδnet(Ck)| ≤(
3xmax

√
n

δnet

)
as in (E.1), we get that as C1 is large enough,

P


 L∑

l=1

∥Al(X̃
2
o −X2

o )A
⊤
l ∥2HS < Lm(m− 1)

n∑
i=1

d2i − to

 for any x̃o ∈ Nδnet(Ck)

∣∣∣∣∣S
 ≤ e−2k logn.
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Then using P[B] ≤ P[B|S] + P[Sc], with B as the event
∑L

l=1 ∥Al(X̃
2
o − X2

o )A
⊤
l ∥2HS < Lm(m −

1)
∑n

i=1 d
2
i − to, and the fact P[Sc] ≤ Le−cn as in (7.4) we conclude that P[B] ≤ e−2k logn + Le−cn.

This implies our the desired result.

F Comparison to the fixed forward operator model

F.1 Proof of Definition 2.14

The proofs in this section uses a similar approach to the proofs in Section 7, with the key mod-
ifications A1 = · · · = AL = A. To proceed with the details, we first define the notations we use
throughout the section, and then point out the differences with the proofs in Section 7. The proof
of the related technical results, particularly Lemma F.1, Lemma F.2, Lemma F.3, Lemma F.4,
Lemma F.5, follow from the proofs of the results in Section 7 by noting that the related proof
in the multilook setting uses bounds on the singular values of the sensor matrices A1, . . . , AL, for
which we used a common bound that also holds true for the fixed measurement matrix A. In
addition, of results in the fixed sensor case provide guarantees with a higher probability as we do
not need to have a uniform control of the singular values of the sensor matrix, as required in the
independent multilook setup. This will also hold true for the subsequent results. We omit the
technical details.

Similar to before, we will show the desired upper bound is achieved by the maximum likelihood
estimator, over is the class of all possible signals C

x̂o = argmin
x∈C

f(x), f(x) = L log det
(
σ2
zIm +AX2A⊤

)
+

L∑
l=1

y⊤
l

(
σ2
zIm +AX2A⊤

)−1
yl (F.1)

For the entirety of the analysis in this section, we will restrict ourselves to the following event

Sfix =
{
A : σmin(AA

⊤) ≥ Emin, σmax(AA
⊤) ≤ Emax

}
, (F.2)

where Emax and Emin according to the following rules

• Case I (n ≥ 4m): We will choose Emax = 9
4(
√
n +

√
m)2 and Emin = 1

4(
√
n −

√
m)2. In

that case the event Sfix satisfies Esing ⊆ Sfix, where Esing is given as in (4.8). This implies
P [Sfix] ≥ P[Esing] ≥ 1− e−cn for some constant c > 0.

• Case II (n < 4m): We will choose Emax = 9
4(
√
n +

√
m)2 and Emin = 0. In that case

the event Sfix satisfies Emaxsing ⊆ Sfix, where Emaxsing is given as in (4.6). This implies
P [Sfix] ≥ P[Emaxsing] ≥ 1− e−cn for some constant c > 0.

Consider the following notations for simplifying the presentation. Let Σ be the inverse of the

covariance matrix E
[
yly

⊤
l |A

]
given by

Σ = Σ(x) := (σ2
zIm +AX2A⊤)−1 (F.3)

Define the vector #»y ∈ RmL and block-diagonal matrix Σ(x) ∈ RmL×mL as the collection of all the
observations and the inverse covariance matrices over different looks

#»y⊤ := (y⊤
1 , ...,y

⊤
L )

⊤, Σ(x) := diag
(
Σ(x), ...,Σ(x)

)
, Σo = Σ(xo), Σ̂o = Σ(x̂o). (F.4)
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In view of the above notations, we can rewrite the negative log-likelihood in (F.1) as

f(x) = − log det(Σ(x)) + #»y⊤Σ(x) #»y (F.5)

Now we proceed with the proof. Since x̂o is the minimizer from (F.1), we have

f(x̂o) ≤ f(xo). (F.6)

For a fixed x, define f(x) as the function of conditional expectation of f(x) given A

f(x) := E[f(x) | A] = − log detΣ(x) + Tr
(
Σ(x)Σ(xo)

−1
)
. (F.7)

Simplifying the expression for f(x̂o)− f(xo), with the above notations, we get

f(x̂o)− f(xo)

= #»y⊤
(
Σ̂o −Σo

)
#»y − Tr

[
Σ−1

o

(
Σ̂o −Σo

)]
+Tr

[
Σ−1

o

(
Σ̂o −Σo

)]
− log det(Σ̂o) + log det(Σo)

= #»y⊤
(
Σ̂o −Σo

)
#»y − Tr

[
Σ−1

o

(
Σ̂o −Σo

)]
+ f(x̂o)− f(xo). (F.8)

Therefore, in view of (F.6) we get

#»y⊤
(
Σo − Σ̂o

)
#»y − Tr(Σ−1

o (Σo − Σ̂o)) ≥ f(x̂o)− f(xo). (F.9)

Our following approach is to find an upper bound for the left side in terms of ∥x̂o − xo∥2 and a
lower bound for the right side in terms of ∥x̂o − xo∥2, and simplify the inequality to get an upper
bound for ∥x̂o − xo∥2. We will use the following notation, similar to (7.12), for a constant c > 0

Cn,m,σz = C(n,m, σz, xmax, xmin) = c
σ2
z + x2maxEmax

σ2
z + x2minEmin

. (F.10)

Establishing an upper bound on #»y⊤(Σo − Σ̂o)
#»y −Tr(Σ−1

o (Σo − Σ̂o)): We use the same δ-net
argument as in Section 7. Consider a δ-net of the set Ck, denoted by Nδnet(Ck), with the choice of
δnet to be discussed later. Define x̃o as the closest vector in Nδnet(Ck) to xo, i.e.,

x̃o = argminx∈Nδnet
(Ck)∥x̂o − x∥2. (F.11)

We will use the following notations for the rest of the section

Σ̃o = Σ(x̃o), X̃o = diag(x̃o), Σ̃o = Σ(x̃), X̃ = diag(x̃), x̃ ∈ Nδnet(Ck). (F.12)

Then in view of triangle inequality we get∣∣∣ #»y⊤(Σo − Σ̂o)
#»y − Tr(Σ−1

o (Σo − Σ̂o))
∣∣∣

≤
∣∣∣ #»y⊤(Σ̃o −Σo)

#»y − Tr(Σ−1
o (Σ̃o −Σo))

∣∣∣+ ∣∣∣ #»y⊤(Σ̃o − Σ̂o)
#»y − Tr(Σ−1

o (Σ̃o − Σ̂o))
∣∣∣ . (F.13)

We use an union bound argument to control the first term above, uniformly over all choices of
x̃ ∈ Nδnet(Ck). This is done in the following result, which is the fixed A version of Definition 7.1.
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Lemma F.1. Consider the definitions in (F.4) and (F.12). There exist constants c1, c2, c3, c4 > 0
such that the following holds with probability 1− e−cn − e−c1Lk log((xmax−xmin)n/δnet)∣∣∣ #»y⊤(Σ̃o −Σo)

#»y − Tr(Σ−1
o (Σ̃o −Σo))

∣∣∣ ≤ b1
√

Z + b′1, for all x̃o ∈ Nδnet(Ck),

where, with the notation in (F.10), b1, b
′
1,Z are defined as

b1 = c3

√
k log

(
(xmax − xmin)n

δnet

)
, b′1 = c4Cn,m,σzk log

(
(xmax − xmin)n

δnet

)
· x2max,

Z = Tr(Σ−1
o (Σ̃o −Σo)Σ

−1
o (Σ̃o −Σo)).

(F.14)

The following result, a counterpart to Definition 7.1 for fixed A, controls the final term of (F.13).

Lemma F.2. Let Cn,m,σz be as in (F.10) and denote b2 = (Cn,m,σz)
2mLδnet. There exist constants

c1, c2 > 0 such that the following holds with probability 1− e−c1n − e−c2mL∣∣∣ #»y⊤(Σ̃o − Σ̂o)
#»y − Tr(Σ−1

o (Σ̃o − Σ̂o))
∣∣∣ ≤ b2.

Combining Lemma F.2 with Lemma F.1, in view of (F.13) we have∣∣∣ #»y⊤(Σo − Σ̂o)
#»y − Tr(Σ−1

o (Σo − Σ̂o))
∣∣∣ ≤ b1

√
Z + b′1 + b2 (F.15)

Establishing a lower bound on f(x̂o)−f(xo): To find the lower bound, we use the decomposition

f(x̂o)− f(xo) = f(x̂o)− f(x̃o) + f(x̃o)− f(xo), (F.16)

with x̃o as in (F.11). The first term, f(x̂o)− f(x̃o) can be bounded by Cn,m,σzxmaxnδnet using the
fact that x̃o is chosen to be at most δnet distance away from x̂o. We bound f(x̃o) − f(xo) using
the following result, which is the fixed A version of Definition 7.3.

Lemma F.3. Assume that σ2
zIm +AX̃2

oA
⊤ and σ2

zIm +AX2
oA

⊤, are invertible. Then,

f(x̃o)− f(xo) ≥
1

2(1 + λ̃max)2
Tr
(
Σ−1

o (Σ̃o −Σo)Σ
−1
o (Σ̃o −Σo)

)
, (F.17)

where λ̃max > 0 is the maximum singular value of Σ
− 1

2
o (Σ̃o −Σo)Σ

− 1
2

o . Moreover, λ̃max ≤ Cn,m,σz

on the event Sfixed in (F.2).

The following result, a fixed A version of Definition 7.4, controls |f(x̂o)−f(x̃o)| for a given δnet.

Lemma F.4. |f(x̂o)− f(x̃o)| ≤ Cn,m,σz · xmaxnδnet ≪ 1 with probability 1− e−cn for some c > 0.

Combining the above results, in view of (F.16) we have, with probability 1− exp(−cn),

f(x̂o)− f(xo) ≥
Z

(Cn,m,σz)
2
− 1. (F.18)
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Simplifying the quadratic inequality: Combining (F.18) and (F.15), in view of (F.9), we have

P

[
Z

(Cn,m,σz)
2
≤ b1

√
Z + b′1 + b2 + 1

]
≥ 1− e−c1Lk log((xmax−xmin)n/δnet) − e−cn − exp (−cmL) .

(F.19)

Rewrite the last inequality as az2−bz−c ≤ 0, with z =
√

Z , a = 1
(Cn,m,σz )

2 , b = b1, c = b′1+b2+1.

As z =
√

Z > 0, z2 is smaller than the square of the positive root of az2−bz−c = 0, which implies

Z = z2 ≤

(
−b+

√
b2 + 4ac

2a

)2

≤

(
−b+

√
b2 + 4ac

2a

)(
b+

√
b2 + 4ac

2a

)
=

c

a
, (F.20)

where the second inequality followed as a, b, c > 0. Using the notations from, (F.10), Definition F.1
and Definition F.2 we get

Z ≤ b′1 + b2
a

= (Cn,m,σz)
2

(
c3k log

(
(xmax − xmin)n

δnet

)
· x2max + (Cn,m,σz)

2mLδnet

)
. (F.21)

Choose δnet =
xmax
n5 and recall mL ≤ n4k log n from Definition 2.14. Then, from the last display we

use (F.19) to get for a constant C > 0

P
[
Z ≤ C · (Cn,m,σz)

2k log n
]
= 1−O

(
n−ckL + exp(−cn) + 2 exp (−cmL)

)
. (F.22)

Finding a lowerbound for Z : In view of Definition 4.14, using the block structure of Σo, Σ̃o

given in (F.4), we have on the event Esing,

Z = Tr

[
Σ−1

o

(
Σ̃o −Σo

)
Σ−1

o

(
Σ̃o −Σo

)]
= LTr

[
(Σ(xo)

−1(Σ(x̃o)− Σ(xo))Σ(xo)
−1(Σ(x̃o)− Σ(xo))

]
≥ L

(Cn,m,σz)
2
(
σ2
z + x2maxEmax

)2 ∥∥∥A(X̃2
o −X2

o )A
⊤
∥∥∥2
HS

,

(F.23)

where Cn,m,σz is as in (F.10). The lower bound on Z is completed with the following lower bound

on
∥∥∥A(X̃2

o −X2
o )A

⊤
∥∥∥2
HS

. The result is the fixed A and L = 1 version of Definition 7.5.

Lemma F.5. The following holds true with a probability 1− exp (−2k log n)−m exp (−cn)

∥A(X̃2
o −X2

o )A
⊤∥2HS

≥4m(m− 1)x2min∥x̃o − xo∥22 − 4Cx2max∥x̃o − xo∥2 logm
√
mn
√
k log n− Cx4maxnk logm log n.

Final upper bound on ∥x̃o−xo∥22: We combine (F.23), (F.22), and Definition F.5 to summarize
the above in terms of the following quadratic inequality with respect to ∥x̃o−xo∥2, that holds with
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a probability 1−O
(
n−ckL + exp(−cn) + exp (−cmL)

)
a∥x̃o − xo∥22 − b∥x̃o − xo∥2 − d ≤ 0

a =
C1m(m− 1)x2min

(Cn,m,σz)
2(σ2

z + x2maxEmax)2
, b =

C2x
2
maxn logm

√
mk log n

(Cn,m,σz)
2(σ2

z + x2maxEmax)2
,

d =
C3x

4
maxnk logm log n

C · (Cn,m,σz)
2(σ2

z + x2maxEmax)2
+ C · (Cn,m,σz)

2k log n

L
.

(F.24)

In view of an argument similar to (7.22) we have with a probability 1−O
(
n−ckL + exp(−cn) + exp (−cmL)

)
1

n
∥x̃o − xo∥22 ≤

d

na
≤ C3x

4
max

x2min

k logm log n

m2
+

(Cn,m,σz)
4(σ2

z + x2maxEmax)
2k log n

nm2L
. (F.25)

This implies, in view of 1
n∥x̃o − xo∥22 ≤ x2max,

E
[
1

n
∥x̃o − xo∥22

]
≤ C3x

4
max

x2min

k logm log n

m2
+

(Cn,m,σz)
4(σ2

z + x2maxEmax)
2k log n

nm2L

+ C1x
2
max(n

−ckL + L exp(−cn) + exp (−cmL)). (F.26)

As ∥x̃o − x̂o∥2 ≤ δnet ≤ xmax
n5 from the definition in (7.13), we continue the last display to get

E
[
1

n
∥x̂o − xo∥22

]
≤ 2C4

{
x4max

x2min

k logm log n

m2
+

(Cn,m,σz)
4(σ2

z + x2maxEmax)
2k log n

nm2L

+ x2max(n
−ckL + L exp(−cn) + exp (−cmL)) +

x2max

n10

}
. (F.27)

Note by our assumption logm ≪ n. Therefore the first term has a slower growth rate compared
to the second term.

To summarize, we have in the regime n ≥ 4m, or in the regime n < 4m but σ2
z ≥ m that

R†
2(C,m, n, σ2

z) = Oxmin,xmin

(
max(σ4

z , n
2)

m2n

k log n

L
+

k logm log n

m2

)
. (F.28)

For the case n < 4m,σ2
z ≤ m, we have by monotonicity of the risk in σZ (Definition 4.2) that

R†
2(C,m, n, σ2

z) ≤ R†
2(C,m, n,m) = Oxmin,xmin

(
max(m2, n2)

m2n

k log n

L
+

k logm log n

m2

)
. (F.29)

Combining these, we have

R†
2(C,m, n, σ2

z) = Oxmin,xmin

(
max(σ4

z ,m
2, n2)

m2n

k log n

L
+

k logm log n

m2

)
. (F.30)

When max(σ4
z ,m

2,n2)
m2n

k logn
L ≥ k logm logn

m2 , or equivalently max(σ4
z ,m

2, n2) ≥ nL logm, we have

R†
2(C,m, n, σ2

z) = Oxmin,xmin

(
max(σ4

z , n
2)

m2n

k log n

L

)
. (F.31)
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F.2 Proof of Definition 2.15 in the case n ≥ 4m

The proof follows the same approach as in Section 5 and the only difference here is the argument
in bounding the KL divergence and βr. We shall point out the difference in below.

Let A = A1 = · · · = AL be an m × n Gaussian matrix, and let Xk,X finite,Ssep, r,Ndiv, αr and
δr be chosen as in Section 5. In place of Definition 5.2, we have (with the same proof)

Lemma F.6. Denote Emax := λmax(AAT ), Emin := λmin(AA
T ). On the event Esing, defined in

(4.8), if
[σ2

z+x2
max·Emax]·Emax

(σ2
z+x2

min·Emin)
2 · xmaxδr <

1
4 , we have for all xi ̸= xj ∈ Ssep

KL(Pxi ∥ Pxj ) ≤2

(
σ2
z + x2maxEmax

)2(
σ2
z + x2minEmin

)4 · L
∥∥∥A(X2

i −X2
j )A

⊤
∥∥∥2
HS

,

where Xi and Xj are diagonal matrices corresponding to the vectors xi,xj ∈ Ssep.

We now apply the upper tail bound of Definition 4.10 for the case when L = 1 to find a

deterministic upper bound for L
∥∥∥A(X2

i −X2
j )A

⊤
∥∥∥2
HS

. We set di,j := x2
i − x2

j , and define Di,j =

diag(di,j). Choose We choose the following values of t1,i,j and t2,i,j to apply the upper tail bound
in Definition 4.10

t1,i,j :=Ct1

(
xmax

∥∥xi − xj

∥∥
2

√
log(mr2) + xmax

∥∥xi − xj

∥∥
∞ log(mr2)

)
;

t2,i,j :=Ct2 logm

(
x2max

∥∥xi − xj

∥∥2
4

√
m(

√
m+

√
n)4 log r2 + x2max

∥∥xi − xj

∥∥2
∞ (

√
n+

√
m)2 log r2

)
,

where Ct1 and Ct2 are two constants. In view of the above definition, consider the event

Edcpl :=
⋂

1≤i<j≤r

[
∥A(X2

i −X2
j )A

⊤∥2HS < mt21,i,j +m(m− 1)∥di,j∥22 + t2,i,j

]
. (F.32)

Using the same argument as in Subsection 5.4, we have

P(Ec
dcpl ∩ Ẽmaxsing) ≤ r2 exp

{
−C̃

(
log(mr2) + (logm)(log r)

)}
, (F.33)

and for sufficiently large Ct1 , Ct2 , we have

P(Edcpl ∩ Ẽmaxsing) ≥ 1− 1

(rm)8
− 2m exp (−cn) . (F.34)

In view of the above, on the high-probability event Edcpl ∩ Ẽmaxsing, we have for each 1 ≤ i < j ≤ r,∥∥∥Al(X
2
i −X2

j )A
⊤
l

∥∥∥2
HS

≤mt21,i,j +m(m− 1)∥di,j∥22 + t2,i,j

+ C logm

x2max

√
kn

Ndiv
δ2r

√
m(

√
m+

√
n)4 log r2 + δ2r (

√
n+

√
m)2 log r2

 ,
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Hence, restricting to the event Edcpl ∩ Ẽmaxsing ∩ Esing, together with Definition 5.2, we have for
constant C̄ := Cxmin,xmax > 0

βr := max
1≤i<j≤r

KL(Pi ∥ Pj)

≤ 2

(
σ2
z + x2max · Emax

)2
L(

σ2
z + x2min ·

1
4(
√
n−

√
m)2

)4 max
1≤i<j≤r

∥∥∥A(X2
i −X2

j )A
⊤
∥∥∥2
HS

≤ C̄L

max(σ4
z , n

2)

(
m

kn

Ndiv
δ2r log(mr2) +mδ2r log

2(mr2) +m(m− 1)
kn

Ndiv
δ2r

+ logm

√
kn

Ndiv
δ2r

√
m(

√
m+

√
n)4 log r2 + δ2r (

√
n+

√
m)2(logm)(log r2)

)

≤ C̄δ2rm
2nLk

max(σ4
z , n

2)Ndiv

(
log(mr2)

m
+

log2(mr2)Ndiv

mnk
+ 1 +

√
nNdiv log r2

km3/(logm)2
+

(logm)(log r2)Ndiv

m2

)

≤ Θxmin,xmax(1)
m2nLk

max(σ4
z , n

2)Ndiv
δ2r , (F.35)

where the last inequality followed by factoring out δ2r and using the following inequalities that are
consequences of Definition 5.1, alongside our assumptions logm = Θ(log n), logL = O(log n), and
there exists ε ∈ (0, 1/2) such that k ≤ n1−2ε,max(σ4

z ,m
2, n2)k log n ≤ m2n1−εL. Note that the

bound (F.35) is the same as the bound (5.19) for βr.
As a consequence, by Definition 4.3 we have for any estimator x̂, the same lower bound

max
1≤i≤r

E

[
∥x̂− xi∥2

n

]
≥α2

r

4n

(
1− βr + log 2

log r

)2

P
(
Ẽmaxsing ∩ Edcpl ∩ Esing

)
= Θ

(
α2
r

n

)

=Θxmax,xmin

(
max(σ4

z , n
2)

m2n

k log
(
Ndiv/k

)
L

)
= Θε,xmax,xmin

(
max(σ4

z , n
2)k log n

m2nL

)
.

F.3 Proof of Definition 2.15 in the case n ≤ 4m

The proof follows the same approach as in Section 6 and here we point out the main differences.
This section will primarily establish the lower bound for the sub-case m ≥ 4n, σ2

z = 0 given by

R†
2(Ck,m, n, 0) = inf

δ
sup
x∈Ck

E

∥∥δ( #»y )− xo

∥∥2
2

n

 = Ωε,xminxmax

(
k log n

nL

)
, m ≥ 4n. (F.36)

Then, the lower bound for a general σ2
z ≥ 0 and 4n ≥ m ≥ n

4 follow from Definition 4.1 and
Definition 4.2 by the same monotonicity argument as in Section 6 before (6.2). Note that, in view
of Definition 4.1, for any n

4 ≤ m ≤ 4n, the last display implies

R†
2(Ck,m, n, 0) ≥ R†

2(Ck, n/4, n, 0) ≥ R†
2(Ck, 4n, n, 0) = Ωε,xmin,xmax

(
k log n

nL

)
. (F.37)
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By the same argument as in the paragraph before (6.6), in the case 4m ≥ n and σ2
z ≥ m we have

the lower bound

R†
2(Ck,m, n, σz) = Ωxmax,xmin

(
σ4
z

m2n
· k log n

L

)
, whenever σ2

z ≥ m. (F.38)

To achieve a lower bound for the sub-case m ≥ n
4 , σ

2
z ≤ m, we first use that the miminax error is

non-decreasing function in σz (Definition 4.2) to get R†
2(Ck,m, n, 0) ≤ R†

2(Ck,m, n, σz). Then, to

achieve a lower bound to R†
2(Ck,m, n, 0) we combine the lower bounds in (F.36) and (F.37) to get

R2(Ck,m, n, 0) = Ωxmax,xmin

(
m2

m2n
· k log n

L

)
= Ωxmax,xmin

(
k log n

nL

)
. (F.39)

Then, for σ2
z ≤ m, by (6.3) we get

C1
k log n

nL
≤ R†

2(Ck,m, n, 0) ≤ R†
2(Ck,m, n, σz), (F.40)

where C1 is a constant depending on xmin, xmax. Combining (F.38) and (F.39) for the case n ≤ 4m
yields the desired minimax lower bound

R†
2(Ck,m, n, σz) = Ωxmax,xmin

(
max(σ4

z ,m
2)

m2n
· k log n

L

)
, m ≥ n

4
, σz ≥ 0.

Now it remains to establish (F.36). We will show this with sufficient statistics as in Section 6.
Define A = diag(A, . . . , A) ∈ RmL×nL and note that A⊤A = diag(A⊤A, . . . , A⊤A). Throughout
the section we analyze the expected loss on the high probability event E ′

sing defined in (4.10), where

A = A1 = · · · = AL and A⊤A is invertible. Then with the same proof as Definition 6.2, we have

Proposition F.7. Consider the case σz = 0 and that the event E ′
sing holds. Then TA( #»y ) =

(A⊤A)−1A⊤ #»y is a sufficient statistic for the parameter xo.

By Rao-Blackwell theorem (Definition 6.3), we have,

E
[∥∥δ( #»y )− xo

∥∥2
2
|E ′

sing

]
≥ E

[∥∥g(TA( #»y ))− xo

∥∥2
2
|E ′

sing

]
.

Therefore it suffices to prove the following lemma

Lemma F.8. Consider the model (1.2) with σz = 0,m ≥ 4n. Then, there exists a constant C ≥ 0,
we have

inf
g

sup
x∈Ck

E
[∥∥g(TA( #»y ))− xo

∥∥2
2
|E ′

sing

]
≥ C

k log n

L
.

The proof of Definition F.8 is the same as that of Definition 6.4. Finally, it follows from it
follows from Theorem 6.3 and Definition F.8 that

inf
δ
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x∈Ck

E
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n
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E
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)
= Ω

(
k log n

nL

)
.
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G Proof of Theorem 2.10

G.1 Proof of the lower bound

For

Sbdd
k :=

{
x ∈ Rn : ∥x∥o ≤ k, xi = 0 or 0 < xmin ≤ xi ≤ xmax

}
,

and any S ⊂ [n] and |S| ≤ k,

CS :=
{
xS ∈ R|S| : xmin ≤ xi ≤ xmax, i ∈ S

}
= [xmin, xmax]

|S|.

Also, for a fixed S ⊂ [n] with |S| ≤ k, define

Sbdd
k,S = {x ∈ Rn : xi = 0, i /∈ S, and xi ∈ [xmin, xmax] for i ∈ S}.

In this section, we aim to prove the lower bound, i.e we aim to prove that

R2(Sbdd
k ,m, n, k, L, σz)

= inf
x̂∈Rn

sup
xo∈Sbdd

k

E

[
∥x̂− xo∥22

n

]
= Ωxmax,xmin

(
k

nL

)
.

(G.1)

First note that by the monotonicity result proved in definition 4.2, we haveR2(Sbdd
k ,m, n, k, L, σz) ≥

R2(Sbdd
k ,m, n, k, L, 0). Therefore it suffices to establish

R2(Sbdd
k ,m, n, k, L, 0) = Ωxmax,xmin

(
k

nL

)
. (G.2)

For any S ⊂ [n] and |S| ≤ k, since Sbdd
k,S ⊂ Sbdd

k

inf
x̂∈Rn

sup
xo∈Sbdd

k

E

[
∥x̂− xo∥22

n

]
≥ inf

x̂∈Rn
sup

xo∈Sbdd
k,S

E

[
∥x̂− xo∥22

n

]
inf

x̂S∈R|S|
sup

xo,S∈CS
E

∥∥x̂S − xo,S

∥∥2
2

n

 .

To obtain the last equality we have noted that since we know the exact location of non-zero elements
of xo for any xo ∈ Sbdd

k,S , we have set the value of x̂ to zero at those locations, and have reduced
the problem to estimating the nonzero elements of xo. We now claim that, in particular, if |S| = k,
we have

R2(CS ,m, n, k, L, 0) = Ωxmax,xmin

(
k

nL

)
. (G.3)

Indeed, in this case our model reduces to

yl = Al,SXo,Swl,S , l = 1, 2, ..., L. (G.4)

where Al,S is the m×k matrix of whose columns are those of Al with indices in S, Xo,S is the k×k
diagonal matrix in which all the diagonal locations with indices in S- are nonzero, and wl,S is the
k-dimensional Gaussian vector. Since m ≫ k, we know that ỹl := (A⊤

l,SAl,S)
−1A⊤

l,Syl is sufficient
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statistics (see definition 6.2) and by using Rao-Blackwell theorem (Theorem 6.3), it suffices to
obtain a lower bound for the minimax risk of estimation xS from ỹ1, ỹ2, . . . , ỹL:

ỹl := Xo,Swl,S , l = 1, 2, ..., L. (G.5)

We shall prove this by Definition 4.3. To use Definition 4.3, note that the joint distribution of
ỹ1, ỹ2, . . . , ỹL is given by:

Px ∼ ⊗L
l=1N(0, X2

o,S). (G.6)

For x,x′ ∈ Rn, we define the pseudo-metric,

d(θ(Px), θ(Px′)) = d(x,x′) := ∥x− x′∥2. (G.7)

Next, we shall construct an αr-separated set {x1, ...,xr} in [xmin, xmax]
|S| = [xmin, xmax]

k. To
construct this subset, we use the following steps. Using the δ-packing defined in definition 4.5 we
have:

Lemma G.1. For any p < k
2 , the k-dimensional Hamming cube {0, 1}k has p-packing number at

least 2k∑p
i=0 (

k
i)

with respect to the Hamming distance.

Proof. Let S be a p-packing subset of {0, 1}k. By definition we must have

{0, 1}k ⊂ ∪x∈SB(x, p), (G.8)

where B(x, p) is the ball centered at x with radius p with respect to the Hamming distance. In
other words, B(x, p) is the collection of points in {0, 1}k whose at most p coordinates are different
from those of x. A direct counting gives |B(x, p)| ≤

∑p
i=0

(
k
i

)
. Taking cardinality of both sides of

(G.8) yields

2k ≤
p∑

i=0

(
k

i

)
|S|.

This completes the proof.

To obtain a simpler lower bound for the p-packing that can be used in our arguments, we assume
that p = k/7 and establish the following lemma:

Lemma G.2. We have 2k∑⌊k/7⌋
i=0 (ki)

≥ ak for some a > 1.

Proof. Indeed, for p := ⌊k/7⌋ ≤ k
2 , since

(
k

i−1

)
/
(
k
i

)
= i

k−i+1 ≤ 1
2 , for i ≤ p ≤ k/2, we have

p∑
i=0

(
k

i

)
≤
(
1 +

1

2
+ · · · 1

2p−1

)(
k

p

)
≤ 2

(
k

p

)
≤ 2

(
ek

p

)p

.

So log 2k∑p
i=0 (

k
i)

≥ k log 2 − p log
(
ek/p

)
− log 2 ≫ k · b for some b > 0. Selecting a = eb establishes

the result.
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Let H ⊂ {0, 1}k be an ⌊k/7⌋-packing set with respect to the Hamming distance from Defini-
tion G.1. By Definition G.2, |H| ≥ ak.

Now we aim to use H to create a subset of CS . Define x̄ := xmin+xmax
2 . We create the subset by

scaling and translation of H in the following way:

c
xmax − xmin√

L
· H+ x = {x1, ...,xr} ⊂ Bℓ2

(
x, c

√
k

L
· (xmax − xmin)

)
∩ [xmin, xmax]

k. (G.9)

Note that this set forms a cxmax−xmin√
L

√
⌊k/7⌋ -separated set for [xmin, xmax]

k with respect to the ℓ2-

distance, with cardinality r ≥ ak for some a > 1. To use Definition 4.3 set αr := cxmax−xmin√
L

√
⌊k/7⌋.

It follows from Definition 5.2 (with Al replaced by In) that

βr := max
1≤i<j≤r

KL(Pi ∥ Pj) ≤ L
x4max

x8min

max
1≤i<j≤r

∥∥∥X2
i −X2

j

∥∥∥2
HS

≤4x6max

x8min

L max
1≤i<j≤r

∥∥xi − xj

∥∥2
2
≤ 4x6max

7x8min

(xmax − xmin)
2c2k ≤ 1

10
log r,

for sufficiently small c from (G.9). Hence, by Definition 4.3,

inf
x̂S∈R|S|

sup
xo,S∈CS

E

∥∥x̂S − xo,S

∥∥2
2

n

 ≥ α2
r

4n

(
1− βr + log 2

log r

)2

P
(
E ′
sing

)
= Θ

(
α2
r

n

)
= Θxmin,xmax

(
k

nL

)
.

G.2 Proof of the upper bound

In this section we aim to prove the upper bound. In other words, we aim to prove that

R2(Sbdd
k ,m, n, k, L, σz) = inf

x̂∈Rn
sup

xo∈Sbdd
k

E

[
∥x̂− xo∥22

n

]
= Oxmax,xmin

(
k

nL
+

σ2
zk log(n/k)

mn

)
Consider the model

yl = AlXowl + zl, for l = 1, . . . , L. (G.10)

Define, ul := Xowl ∼ N(0, X2
o ). Observe that ul is unbounded, but still k-sparse. If we think of ul

as our new unkown data, the model (G.10) reduces to L copies of classical sparse linear regression
models

yl = Alul + zl, l = 1, . . . , L,

where ul ∈ Sk := {x ∈ Rk : ∥x∥0 ≤ k}. Our strategy for obtaining the upper bound is to first
estimate each uℓ separately from yl. This is a standard problem in sparse linear regression. We
use one of the classic results for obtaining an upper bound for the minimax risk of sparse linear
regression model:

Theorem G.3. (Verzelen, 2012, Equation (3.9) and Proposition 6.4) Let A be an m×n Gaussian
matrix and z ∼ N(0, σ2

zIn). Consider the sparse linear regression model y = Au + z where the
unknown signal u ∈ Sk. Then for k log(en/k) ≤ m, we have minimax risk estimate

inf
û

sup
u∈Sk

E
[
∥û− u∥22

]
= Θ

(
σ2
zk log(en/k)

m

)
.
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For each 1 ≤ l ≤ L, let ûl be the minimax estimator from Definition G.3, and let x̂2 :=
1
L

∑L
l=1 û

2
l be our estimator for the unknown signal xo ∈ Sbdd

k . It follows that

E
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2

]
=E
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where for (a) we used (a+ b)2 ≤ 2(a2 + b2) in the vector form.
Since (u2

l − x2
o)’s are k-sparse, independent and mean zero, for the second term we have

2

L2
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8x2maxE
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]
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L
.

where ζ ∼ N(0, 1).
To treat the first term, we notice that by Definition G.3

2

L2
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û2
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≤ 2
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E
[∥∥∥û2

l − u2
l
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2

]
≤ 2σ2

zk log(en/k)

m
.

where for (a) we have used the elementary inequality (a1 + · · ·+ aL)
2 ≤ L(a21 + · · ·+ a2L).
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