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Abstract

We investigate the problem of estimating the average treatment effect (ATE) under
a very general setup where the covariates can be high-dimensional, highly correlated,
and can have sparse nonlinear effects on the propensity and outcome models. We
present the use of a Double Deep Learning strategy for estimation, which involves com-
bining recently developed factor-augmented deep learning-based estimators, FAST-NN,
for both the response functions and propensity scores to achieve our goal. By using
FAST-NN, our method can select variables that contribute to propensity and outcome
models in a completely nonparametric and algorithmic manner and adaptively learn
low-dimensional function structures through neural networks. Our proposed novel es-
timator, FIDDLE (Factor Informed Double Deep Learning Estimator), estimates ATE
based on the framework of augmented inverse propensity weighting AIPW with the
FAST-NN-based response and propensity estimates. FIDDLE consistently estimates
ATE even under model misspecification, and is flexible to also allow for low-dimensional
covariates. Our method achieves semiparametric efficiency under a very flexible family
of propensity and outcome models. We present extensive numerical studies on synthetic
and real datasets to support our theoretical guarantees and establish the advantages
of our methods over other traditional choices, especially when the data dimension is
large.

Keywords: Factor models, Deep learning, FAST-NN, AIPW, Average treatment effect.

1 Introduction

Estimating the average treatment effect (ATE) is a central task in causal inference, which
has led to significant findings in many disciplines, including economics (Oreopoulos, 2006)
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and political science (Aronow and Carnegie, 2013). ATE measures the expected difference
in responses between units assigned to a treatment and those assigned to a control. In
mathematical terms, given an experimental unit with covariate vector x ∈ Rp and treatment
assignment indicator T (T = 1 denotes that the unit receives treatment and T = 0 indicates
that the unit is in the control group), the population outcome of y is given as

E[y|T,x] = µ∗
0(x)1{T=0} + µ∗

1(x)1{T=1}, (1)

where µ∗
0, µ

∗
1 are unknown outcome functions and the ATE is given by µ = E [µ∗

1(x) − µ∗
0(x)] .

In practice, it is common to collect data on many variables deemed important in affecting
policy outcomes; however, the treatment effect changes depending only on a handful of covari-
ates, which are usually unknown to statisticians. Our method allows us to select important
variables in a completely nonparametric and algorithmic manner. In addition, the covariates
affecting the responses and treatments can be high-dimensional and highly correlated, and
researchers might have incorrect assumptions about the data-generating models on the out-
come and propensity functions. These challenges can be addressed by employing the recently
developed neural network method FAST-NN (Fan and Gu, 2024, Factor-Augmented Sparse
Throughput Neural Networks).

The ATE estimation problem becomes significantly challenging when the covariate di-
mension p grows with the sample size, and could be significantly larger than that. It is
standard in such scenarios to assume that the output functionals are low-dimensional func-
tions of x. Factor modeling is historically considered to be an excellent choice for studying
low-dimensional structures in the data and can also account for dependency among data
variables (Fama and French, 2015; Fan et al., 2020). Applications exist in various important
statistical problems, such as covariance estimation (Fan et al., 2008), dependence modeling
(Oh and Patton, 2017), variable selection (Fan et al., 2020), tensor modeling (Zhou et al.,
2025) and clustering (Tang et al., 2024). Given a p-dimensional random vector x, the factor
model assumes

x = Bf + u, B ∈ Rp×r,f ∈ Rr,u ∈ Rp, r < p, (2)

where the latent factor f and the independent idiosyncratic part u are unobservable random
variables and the factor loading matrix B ∈ Rp×r is fixed but unknown. The loading matrix
B indicates how the covariate vector x depends on the latent factor f .

For modeling a function m(x) such as the outcome or propensity functions using low-
dimensional components, one often assumes the factor-augmented sparse throughput (FAST)
model m(x) ≜ m(f ,uJ ), where J is the set of active coordinates of u and r + |J | (here
and below, given any set J , we denote its size by |J |) is significantly smaller than the
covariate dimension p. In particular, the factor structure enables us to estimate the effective
components uJ and f more accurately as p grows via neural networks (Fan and Gu, 2024)
and the FAST-NN in that paper allows us to nonparametrically select the variable set J .
As noted in Fan and Gu (2024), the FAST model is very flexible and includes most existing
models, from factor regression to sparse models in both parametric and nonparametric forms.
Note that given f , the FAST model m(f ,uJ ) can also be written as

m(f ,uJ ) = m̃(f ,xJ ) =

{
m̃(xJ ) specific case I: sparse regression
m̃(f) specific case II: factor regression
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for another function m̃ under the factor model (2). Therefore, it is a factor-augmented sparse
nonparametric regression model. The model includes the nonparametric sparse regression
model m̃(xJ ) and nonparametric factor regression model m̃(f) as two specific examples. It
is applicable to the case where there is no factor structure (r = 0, covariates are weakly
correlated) or low-dimensional setting (J = all variables).

In our current manuscript, we study the application of Deep Learning (DL) methods for
estimating ATE. Efficient estimation of ATE often involves estimating both the responses
(corresponding to treatment and control groups) and the propensity score, the conditional
probability of receiving treatment given the covariates (Hirano et al., 2003), via the Aug-
mented Inverse Propensity Weighting AIPW. Given an experimental unit with treatment
assignment indicator T and covariate x, its propensity score is defined as

π∗(x) = E [T |x] . (3)

Deep Learning is an extremely useful estimation tool when the structures of the target func-
tions are unknown and possibly nonlinear. We term the strategy of using DL to learn both
response and propensity component as the Double Deep Learning (DDL) technique, and
our proposed estimator of the ATE will combine the benefits of such deep learning strate-
gies. In the current literature, it is unclear whether DL methods are valuable tools for ATE
estimation in the presence of strong covariance dependency and sparsity. For applying DL to
handle strong covariates dependence, it is sensible to perform a denoising step to capture the
independent components of the high-dimensional covariates and use the projected data to
perform function estimation. However, the dependency structure is often misspecified (e.g.,
incorrect knowledge about r), leading to incorrect constructions of the denoising algorithms.
It is known in the literature that model misspecifications can hurt propensity estimation
significantly and lead to biased estimation of the ATE (Drake, 1993). From a practitioner’s
perspective, it is desirable to have efficient ATE estimators that can counter the practical
issues mentioned above. On the other hand, the ATE estimation strategy should be flexible
to tackle the case where the covariates are given to be low-dimensional, and we do not need
to estimate the factor structure. In brief, we address the following:

Can using Double Deep Learning for responses and propensity estimation lead to efficient
ATE estimation, both in the case of low-dimensional covariates and high-dimensional covari-
ates with or without factor structures, even under model misspecifications?

In this paper we answer this question affirmatively. We show that for high-dimensional
covariates, even when an over-specification r̄ of the factor dimension r is provided (this
includes the useful case that covariates are weakly correlated, but the factor model is used.),
we can construct consistent factor augmented and deep learning based ATE estimators. Our
results allow the covariate dimension to be significantly larger than the sample size, leading
to resolving the problem in high dimensions. The versatility of our inference also provides
the option to remove the factor modeling component when dealing with low-dimensional
scenarios. Our ATE estimator is asymptotically Gaussian and semiparametrically efficient.
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1.1 Our contributions

Methodological contribution

To our knowledge, our work is the first to introduce factor augmented deep learning tech-
niques in the context of ATE estimation and analyze their theoretical guarantees. We propose
a double deep learning type estimator called FIDDLE, that stands for the Factor Informed
Double Deep Learning Estimator. Suppose we have n observations of the response, treat-
ment indicator, and covariate values, given by {(yi, Ti,xi)}ni=1. Our algorithm consists of
three major steps:

• The pretraining factor augmentation step: This step aims to estimate the factor
components that determine the response and propensity (target) functions. We intro-
duce a novel diversified projection matrix construction to perform factor augmentation.
This is the only step where we use an independent pretraining sample of negligible size,
vanishing compared to n. When the covariate dimension is low, we remove this factor
augmentation step from our method, and the following steps remain the same.

• The double deep learning step: We estimate the outcome and propensity functions
using factor-augmented deep neural networks. Specifically, we use a newly constructed
diversified matrix to construct the FAST-NN (Fan and Gu, 2024) type estimators
µ̂0, µ̂1, π̂.

• The ATE estimation step: We use the structure of the Augmented Inverse Propen-
sity Weighted (AIPW) estimator (Glynn and Quinn, 2010), to combine the deep-
learning-based FAST-NN estimators in the last step, and apply them to the same
set of data without any sample splitting to construct the ATE estimator FIDDLE

µ̂FIDDLE =
1

n

n∑
i=1

{(
Tiyi
π̂(xi)

− (1 − Ti)yi
1 − π̂(xi)

)
− (Ti − π̂(xi))

(
µ̂1(xi)

π̂(xi)
+

µ̂0(xi)

1 − π̂(xi)

)}
.

(4)

The doubly robust structure of the AIPW estimator enables us to combine the consis-
tency of the estimators for response and propensity to produce an efficient estimator
of ATE.

Remark 1 (Comparison with previous algorithms). The double deep learning-type strate-
gies to combine deep-learning-based estimators are not new in the ATE estimation literature
(Du et al., 2021; Farrell, 2015). However, such constructions often require knowledge of
the exact low-dimensional structure of the target functions (Du et al., 2021, Condition 1)
and often considers other dependency structures (Farrell, 2015) and sparsity as in the FAST
model, which can significantly degrade the performance. In comparison, the construction
of FIDDLE employs factor-augmented deep learning strategies to draw inference under de-
pendency assumptions and learn low-dimensional target functions algorithmically. FIDDLE
is also able to work with an overspecified number of factors, which significantly extends its
applicability. In addition, if practical knowledge suggests that the data-generating response
and propensity functions do not depend on the factor components, we apply our algorithm
without the factor-augmentation step, thereby avoiding the pretraining step. Such scenarios
often arise when the covariate dimension is small.
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Contributions to theory and applications

Our paper is the first to show asymptotic normality of the FAST-NN based AIPW estimator
for estimating the average treatment effect. We only use a negligible pretraining sample
(compared to the sample size n) to construct the diversified projection matrix, and the rest
of the deep learning-oriented estimator construction does not involve any further sample
splitting. This makes it challenging to provide theoretical guarantees for the corresponding
ATE estimator FIDDLE. In particular, our theoretical contributions are threefold:

• Results for our new diversified projection matrix: We show that our proposed
diversified projection matrix adheres to the requirements in the literature (Fan and
Liao, 2022) and that its singular values are large enough to produce strong estimation
guarantees for the response and propensity functions. Our construction differs from
the previous method in Fan and Gu (2024) where an incoherence condition on the
sample variance matrix (Candes and Romberg, 2007; Abbe et al., 2020) is required in
order to deduce boundedness of the diversified projection matrix (see Definition 7). In
contrast, our new construction is simple and removes such a requirement.

• Estimation guarantees for response and propensity functions: We demon-
strate that, under the assumption of a hierarchical composition model, factor-augmented
neural network estimators can provide optimal guarantees even when the covariate
dimension is high. Additionally, these intermediate steps help identify the active com-
ponents of the covariates in the propensity and response functions, thereby providing
interpretable results. This provides valuable information for policy-making, answering
questions such as which covariate components influence the assignment of individual
units to treatment and control groups, as well as their corresponding outcomes. Our
theoretical guarantees for response function estimation using the factor-augmented
neural network deviates from the existing work of Fan and Gu (2024), that studied
the function estimation problem with a fixed dataset, as we need to use the random
subsamples of control and treatment groups to estimate the response functions µ∗

0, µ
∗
1

respectively. We improve on the above work and provide a detailed analysis of con-
trolling the estimation errors in such random setups.

• Efficiency guarantees for FIDDLE: We show that under some broad and relaxed
smoothness assumptions on the outcome and propensity functions, FIDDLE enjoys
asymptotic normality with semiparametric efficiency for ATE estimation. The analysis
comes with significant challenges as we avoid sample splitting to perform the ATE
estimation. The semiparametric efficiency is a desirable property in the literature
for such tasks (Farrell, 2015; Fan et al., 2022), as this helps to construct confidence
intervals for the unknown treatment effects.

• Contributions in numerical studies: We also present comparisons of our methods
with many classical off-the-shelf ATE estimation techniques and demonstrate how a
factor-oriented denoising step helps improve performance in high-dimensional scenar-
ios. Our studies support our theoretical results and show that the accuracy of our
estimators increases impressively as the covariate dimensions grow large, even beyond
the sample size. The methods we compare against include other regularized neural
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networks, Generative Adversarial Networks (GANs), and Causal Forest, among oth-
ers. In terms of studying semi-synthetic data, we use the CIFAR-10 dataset (Canadian
Institute For Advanced Research), which demonstrates the excellent performance of
FIDDLE over other state-of-the-art methods for ATE estimation, particularly as the
dimensionality of covariates x or sample size increases. Furthermore, we apply FID-
DLE and benchmark methods to a real-world dataset from the Metabolic and Bariatric
Surgery Accreditation and Quality Improvement Program (MBSAQIP) to evaluate the
causal effects of different bariatric surgery procedures on weight loss after 30 days of
surgery.

Remark 2 (Comparison with similar existing results). To establish the asymptotic distri-
bution of FIDDLE, we apply a proof technique based on the concept of bracketing inte-
gral (Vaart and Wellner, 2023) to control the randomness of the estimators without sample
splitting, which was inspired by the work of Fan et al. (2022). Still, the analysis differs
significantly as we work with (a) an AIPW-type estimator instead of the IPW and (b) deep
neural networks instead of the standard non-parametric structural assumption. The use of
deep neural networks makes our work model agnostic and algorithmic, providing a more
general guarantee. In addition, it is known in the literature (Glynn and Quinn, 2010) that
the AIPW estimator obtains ATE estimators with lower variance compared to the IPW
estimator, which helps our cause as well. We also establish that even in the presence of
the factor structure, which leads to high correlation in the covariates, we can achieve the
above results. In particular, our guarantees excel when the covariate dimension is signif-
icantly large. The randomness of subsamples {(yi,xi)}i∈[n],Ti=1 and {(yi,xi)}i∈[n],Ti=0 also
contribute to the technical proofs.

1.2 Related works

Factor models play a crucial role in uncovering low-dimensional latent structures. Foun-
dational contributions include (Chamberlain and Rothschild, 1982) and (Bai, 2003), which
established identification and inference under general factor structures. We learn latent fac-
tors based on Diversified Projections (DP) (Fan and Liao, 2022), which allows for low-sample
size and purposeful overestimation of latent factors for robustness. Our estimator incorpo-
rates DP to recover the shared latent structure and improve both treatment and outcome
estimation.

Recent developments in machine learning have further enriched the landscape of causal
inference, particularly in high-dimensional or nonlinear regimes. Double Machine Learning
(DML) (Chernozhukov et al., 2018) formalizes orthogonalization and sample splitting for
inference under ML-based function estimation. Causal Forests (Wager and Athey, 2018)
adapt random forests to estimate conditional average treatment effects (CATE) using spe-
cialized split criteria. GANITE (Yoon et al., 2018) uses generative adversarial networks to
learn counterfactual outcomes and derive individualized treatment effects. Recent method-
ological reviews (Hoffmann, 2024; Brand et al., 2023) provide comprehensive evaluations of
these approaches. Furthermore, recent work on Calibrated Debiased Machine Learning (C-
DML) (van der Laan et al., 2024) introduces novel doubly robust estimators that maintain
asymptotic linearity even under misspecification. While these methods offer flexibility and
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strong empirical performance, many do not explicitly account for latent factor structure in
the covariates, and several are sensitive to model misspecification due to reliance on either
outcome or treatment models alone. In contrast, our method integrates the strengths of fac-
tor structural modeling and modern machine learning by combining factor-based learning,
neural network estimation, and the AIPW framework into a unified pipeline.

Deep neural networks (DNNs) (LeCun et al., 2015) have shown state-of-the-art perfor-
mance in high-dimensional learning tasks and can recover low-dimensional structure (Mousavi
et al., 2015; Chen et al., 2025). Recent studies (Yarotsky, 2017; Kohler and Langer, 2021)
provide non-asymptotic guarantees across function classes. In nonparametric regression,
DNNs mitigate the curse of dimensionality (Bauer and Kohler, 2019; Schmidt-Hieber, 2020;
Fan et al., 2024; Bhattacharya et al., 2024) with the property of adaptively and algorithmi-
cally learning low-dimensional structure. Our method leverages the FAST-NN architecture
proposed by Fan and Gu (2024), which is designed to adaptively capture sparse and dense
components of the covariate space. This flexibility makes it particularly suitable for es-
timating both propensity scores and outcomes in AIPW estimation. Furthermore, Farrell
et al. (2021) offers theoretical support for using DNNs in semiparametric estimation without
sample splitting, aligning with our unified approach for efficient estimation of ATE.

1.3 Organization of the manuscript

The remainder of the paper is organized as follows. Section 2 introduces the setup, notation,
and structural definitions of the problem that underpin our framework. Section 3 introduces
our proposed estimator FIDDLE, and its components. Section 4 formally describes the
model assumptions and the theoretical guarantees for our estimator, including consistency
and convergence rates. Section 5 presents simulation studies that compare the performance of
our method with existing benchmarks under various simulated and real datasets. Additional
supporting results are provided in the appendix.

2 Preparation

We build our model using a fully connected deep neural network with ReLU activation
σ̄(·) = max {·, 0} similar to Fan and Gu (2024). Before presenting our methodology and
results, we provide definitions that we will rely on throughout the manuscript.

Definition 1 (Deep ReLU Networks). Let L be any positive integer and d = (d1, ..., dL+1) ∈
NL+1. A deep ReLU network g : Rd0 → RdL+1 is given as the form

g(x) = LL+1 ◦ σ̄ ◦ LL ◦ σ̄ ◦ · · · ◦ L2 ◦ σ̄ ◦ L1(x), (5)

where Lℓ(z) = Wℓz + bℓ is a linear transformation with the weight parameters Wℓ ∈
Rdℓ×dℓ−1 , bℓ ∈ Rdℓ , and σ̄ : Rdℓ 7→ Rdℓ applies the ReLU activation function coordinatewise.

Definition 2 (Deep ReLU network class). For any L ∈ N,d ∈ NL+1, B,M ∈ R+∪{∞}, the
deep ReLU network family G(L,d,M,B) with truncation level M , depth L, width vector d,
and weight bound B is given as

G(L,d,M,B) = {TrM(g(x)) : g of form (5) with ∥Wℓ∥max ≤ B, ∥bℓ∥max ≤ B} ,
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where TrM(·) is the coordinatewise truncation operator given by [TrM(z)]i = sgn(zi)(|zi|∧M)
and ∥ · ∥max denotes the suppremum norm of a vector. The class of deep ReLU networks
with depth L and width N is given by the specific case d = (din, N,N, . . . , N, dout), and we
denote it throughout the text by G(L, din, dout, N,M,B).

We will use the following class of hierarchical composition functions to model µ∗
0, µ

∗
1, π

∗.

Definition 3 ((β, C)-smooth functions). A d-variate function f is called (β, C)-smooth for
β, C > 0 if the following is satisfied. Decompose β into integer part r ≥ 0 and fraction part
0 < s < 1. Then given every non-negative sequence α ∈ Nd with

∑d
j=1 αj = r, the partial

derivative (∂f)/(∂xα1
1 . . . xαd

d ) exists, and
∣∣∣ ∂rf

∂x
α1
1 ...∂x

αd
d

(x) − ∂rf

∂x
α1
1 ...∂x

αd
d

(z)
∣∣∣ ≤ C∥x− z∥s2.

Definition 4 (Hierarchical composition of smooth functions (Kohler and Langer, 2021;
Fan and Gu, 2024)). Fix a constant C > 0. Let H(d, l,P) denote the class of l-depth
and d-variate hierarchical composition of (β, C)-smooth functions for (β, t) in a set P with
P ⊂ [1,∞) × N+, sup(β,t)∈P(β ∨ t) <∞

• (l = 1) We have the set of all t-variate functions with (β, C) smoothness

H(d, 1,P) =
{
h : Rd 7→ R : h(x) = g(xJ ), where g : Rt 7→ R is

(β, C)-smooth for some (β, t) ∈ P and J ∈ [d], |J | = t}

• (l ≥ 2) We recursively define H(d, l,P) as

H(d, l,P) =
{
h : Rd 7→ R : h(x) = g(f1(x), . . . , ft(x)), where g : Rt 7→ R is

(β, C)-smooth for some (β, t) ∈ P and fi ∈ H(d, l − 1,P), i ∈ [t]}

Basically, H(d, l,P) consists of the l time compositions of t-variate functions of (β, C)
smoothness for any (t, β) ∈ P . The accuracy of estimating µ∗

0, µ
∗
1, π

∗ ∈ H(d, l,P) will be
quantified by the parameter γ∗ indicating the hardness of the above composition class.

Definition 5 (Hardness parameter of H(d, l,P)). Given any P satisfying (4) the hardness
quantifier γ∗ of the worst case error of approximating any function in H(d, l,P) by a deep
ReLU network is quantified by γ∗ = β∗

d∗
with (β∗, d∗) = argmin(β,t)∈P

β
t
. In view of Kohler

and Langer (2021), we restrict to the case where all the compositions has a smoothness
parameter β ≥ 1 to simplify the presentation. The parameter γ∗ originates from the following
approximation result of Fan and Gu (2024) (Theorem 4 therein), in which β/t reflects the
dimension-adjusted degree of smoothness in a component of the hierachical composition
model.

Lemma 1 (Approximating H(d, l,P) via deep ReLU Networks). Let g be a d-variate,
(β, C)-smooth function. There exists some universal constants c1–c5 depending only on
d, β, C, such that for arbitrary N ∈ N+ \ {1}, there exists a deep ReLU network g† ∈
G(c1, d, 1, c2N,∞, c3N

c4) satisfying ∥g†−g∥∞,[0,1]d ≤ c5N
−2β/d. Furthermore, if g ∈ H(d, l,P)

with sup(β,t)∈P(β ∨ t) <∞ and g is supported on [−c6, c6]d for some constant c6. There also
exists some universal constants c7–c11 such that for arbitrary N ∈ N+ \ {1}, there exists a
deep ReLU network g† ∈ G(c7, d, 1, c8N,∞, c9N

c10) satisfying ∥g† − g∥∞,[−c6,c6]d ≤ c11N
−2γ∗

.
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Definition 6 (Bracketing number and integral (Vaart and Wellner, 2023)). Given any
distribution P , a function class F and a fraction ϵ > 0, let N[](ϵ,F , ∥ · ∥) denote the ϵ-
bracketing number of F under any norm ∥ · ∥, i.e., the minimum number of ϵ-brackets

needed to cover F in the ∥ · ∥ distance. Denote the bracketing integral as J̃[] (δ,F , ∥ · ∥) =∫ δ

0

√
1 + logN[](ϵ,F , ∥ · ∥) dϵ. We will pick a suitable norm later to fit our analysis.

Definition 7 (Diversified projection (DP) matrix (Fan and Liao, 2022; Fan and Gu, 2024)).
Let r̄ ≥ r and c1 be a universal positive constant. A p× r̄ matrix W is called a DP matrix if
it satisfies (a) Boundedness: ∥W ∥max ≤ c1, (b) Exogeneity: W is independent of x1, . . . ,xn,
(c) Significance: the matrix H = p−1W⊤B ∈ Rr̄×r satisfies νmin(H) ≫ p−1/2. Each column
of W is called a diversified weight, and r̄ is the number of diversified weights.

3 Methodology: FIDDLE

Our proposed estimator FIDDLE is a double deep learning estimator that relies on estimating
both the outcome and propensity function using factor-augmented sparse throughput neural
networks (FAST-NN) and then applying the AIPW estimator (4). To obtain the above deep
learning-based estimators, we use the idea of the FAST estimator introduced in Fan and
Gu (2024) that uses a LASSO (Tibshirani, 1996) type penalized loss function. We describe
the estimator below. Let W ∈ Rr̄×p be a given diversified projection matrix as defined in
Definition 7 (a construction of W used in our work is outlined below). Suppose that we
have the data {(yi, Ti,xi)}ni=1. Then estimate the factor component of xi as

f̃i =
1

p
W⊤xi, i = 1, . . . , n. (6)

To describe our objective functions to construct the deep learning estimators, define the
clipped-L1 function ψτ (x) with the clipping threshold τ > 0 as ψτ (x) = |x|

τ
∧ 1. Define

n0 =
∑n

i=1(1 − Ti), n1 =
∑n

i=1 Ti. Then the penalized mean squared error objectives

R̂0, R̂1, R̂2 corresponding to estimating µ∗
0, µ

∗
1, π

∗ are defined as (the choice of the tuning
parameters λ0, λ1, λ2, τ0, τ1, τ2, B,M, r̄ to guarantee our results will be described later)

R̂t(g,Θ) =
1

nt

n∑
i=1,Ti=t

{
yi − g

([
f̃i,TrM(Θ⊤xi)

])}2

+ λt
∑
i,j

ψτt(Θi,j), t = 0, 1

R̂2(g,Θ) =
1

n

n∑
i=1

{
Ti − g

([
f̃i,TrM(Θ⊤xi)

])}2

+ λ2
∑
i,j

ψτ2(Θi,j)

(7)

where [x, y] denotes the concatenation of two vectors x ∈ Rd1 and y ∈ Rd2 to form a (d1+d2)-
dimensional vector, TrM(·) is the truncation operator defined in Definition 2. Following Fan
and Gu (2024), we optimize the above loss functions over g ∈ G(L, r̄ + N, 1, N,M,B), the

ReLU deep network class given via Definition 2, and Θ ∈ Rp×N . Given any estimators ĝ, Θ̂
originating from the above optimization, denote the corresponding FAST-NN estimator as

mFAST (x;W , ĝ, Θ̂) = ĝ
([

f̃ ,TrM(Θ̂⊤x)
])
. (8)

In light of the above, we are now ready to present our primary estimators.
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3.1 Constructing a diversified projection matrix

To construct a diversified projection matrix W we first randomly pick {i1, . . . , im} ⊂ [n]
and consider the spectral decomposition of the corresponding variance covariance matrix
1
m

∑m
j=1 xijx

⊤
ij

to obtain the eigenvalues {λ̂j} and eigenvectors {v̂} so that

1

m

m∑
j=1

xijx
⊤
ij

=
m∑
j=1

λ̂jv̂jv̂
⊤
j , λ1 ≥ λ2 ≥ . . . , λm ≥ 0.

Then we propose the following novel construction of a diversified projection matrix

W =

[√
λ̂1 · v̂1, . . . ,

√
λ̂r̄ · v̂r̄

]
(9)

We will show later in Theorem 1 that W satisfies the requirements of a diversified projection
matrix with a constant-order smallest singular value. For showing theoretical guarantees,
we can use m = n1−γ for some constant γ > 0 and use {(yi, Ti,xi) : i ∈ [n]/{i1, . . . , im}} for
ATE estimation. Therefore, the pretraining sample size m is negligible. For the convenience
of notations, we will assume from this point onward an access to a W that is independent
of the data, whose size is indexed by n. As m is negligible with respect to n, our theoretical
results presented later will remain the same in view of the construction of W above.

Remark 3 (Comparison with the previous construction of DP matrix). Fan and Gu (2024)

uses the matrix W̃ =
√
p[v̂1, . . . v̂r̄] as their choice of the DP matrix. Notably, showing the

boundedness requirement for W̃ as in Definition 7 is challenging, and requires the incoher-
ence assumption in Abbe et al. (2020). For example, it is challenging to satisfy the bound-

edness requirement of Definition 7 for the submatrix
√
p[v̂r+1, . . . , v̂r̄] of W̃ , as the usual

argument based on Weyl’s Theorem (Chen et al., 2021, Lemma 2.2) provides significantly

weaker controls on the magnitudes of eigenvalues λ̂r+1, . . . , λ̂r̄ when the data generating B
matrix in (2) is of rank r < r̄. Our modifications for constructing W directly guarantee
the boundedness requirements and provide a more natural candidate for the DP matrix
compared to W̃ .

3.2 Response function estimation

To estimate the outcome functions corresponding to the control and treatment groups, we run
two separate FAST-NN on the data {(yi,xi) : Ti = 0, i ∈ [n]} and {(yi,xi) : Ti = 1, i ∈ [n]}
respectively, and define the FAST-NN estimators for estimating µ∗

0, µ
∗
1 as

ĝi(·), Θ̂i ∈ argmin
Θ∈Rp×N

g∈G(L,r̄+N,1,N,M,B)

R̂i(g,Θ), µ̂FAST
i (·) = mFAST (·;W , ĝi, Θ̂i), i = 0, 1. (10)
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3.3 Propensity function estimation

To estimate the propensity function π∗ given in (3) we construct the FAST-NN estimator
using the treatment indicators for the experimental units:

ĝ2(·), Θ̂2 ∈ argmin
Θ2∈Rp×N

g2∈G(L,r̄+N,1,N,M,B)

R̂2(g,Θ), π̃(·) = mFAST (·;W , ĝ2, Θ̂2). (11)

Note that to aid the theoretical analysis later on, we do not initially impose any restrictions
to ensure that mFAST (·;W , ĝ2, Θ̂2) will lie within [0, 1], which is the range for the true
propensity score. We perform a subsequent truncation step to obtain the final propensity
estimator π̂FAST = max

{
αn,min

{
π̃FAST , 1 − αn

}}
for a suitable αn ∈ [0, 1] to be chosen.

3.4 ATE estimation

Ultimately, the double deep learning-type ATE estimator FIDDLE is given as

µ̂FIDDLE =
1

n

n∑
i=1

{(
Tiyi

π̂FAST (xi)
− (1 − Ti)yi

1 − π̂FAST (xi)

)
−(Ti − π̂FAST (xi))

(
µ̂FAST
1 (xi)

π̂FAST (xi)
+

µ̂FAST
0 (xi)

1 − π̂FAST (xi)

)}
. (12)

Remark 4 (Modifying our algorithm for low-dimensional covariates). When the covariates
x1, . . . ,xn have a low dimension, the factor augmentation step becomes redundant. In that
case, we modify our algorithm by replacing f̃i in (6) with xi for all i ∈ {1, . . . , n} and
set Θ = 0 in (7). For simplicity of presentation, the reference to the FIDDLE method
will also include such modifications. The proof of the theoretical results presented later
accommodates this specific scenario in the case r = 0.

4 Theory

4.1 Model

We assume that data {(yi, Ti,xi)}ni=1 are independently and identically distributed realiza-
tions of random variables (y, T,x). The model that generates (y, T,x) is given by

y(t) = µ∗
t (x) + ε(t), t ∈ {0, 1}, P [T = 1|x] = 1 − P [T = 0|x] = π∗(x), (13)

where ε(0), ε(1) are mean zero random variables. The goal is to estimate µ = E [µ∗
1(x) − µ∗

0(x)] .
We assume the factor model x = Bf + u as in (2), and model the functions µ∗

0, µ
∗
1, π

∗ as

µ∗
0(x) = µ∗

0(f ,uJ0), µ
∗
1(x) = µ∗

1(f ,uJ1), π
∗(x) = π∗(f ,uJ2),J0,J1,J2 ⊂ {1, . . . , p} . (14)
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4.2 Assumptions

Assumption 1 (Low dimensionality). r, |J0|, |J1|, |J2| are at most finite constants.

Assumption 2 (Response and propensity bounds). ∥µ∗
0∥∞, ∥µ∗

1∥∞ ≤ M∗, π∗ ∈ (α∗, 1 − α∗)
for constants M∗, α∗ ∈ (0, 1) and µ∗

0, µ
∗
1, π

∗ are c1-Lipschitz for some constants c1 > 0. We
further assume that 1 ≤ M∗ ≤ M ≤ c2M

∗ for some constant c2 > 1, where M is the
trimming parameter used in constructing the FAST-NN estimators in Section 3.

Assumption 3 (Unconfoundedness). T is independent of (y(0), y(1)) given x.

Assumption 4 (Boundedness). For the factor model (2.2), there exist universal constants c1
and b such that (a) the factor loading matrix satisfies ∥B∥max ≤ c1, (b) the factor component
f of x is zero-mean and supported on [−b, b]r, and (c) the idiosyncratic component u of x is
zero-mean and supported on [−b, b]p. This also implies that covariates are bounded in each
coordinate and x1, . . . ,xn ∈ [−K,K]p for some constant K > 0.

Assumption 5 (Weak dependence).
∑

j,k∈[p],j ̸=k |E[ujuk]| ≤ c1 · p for some constant c1.

Assumption 6 (Sub-Gaussian noise). There exists a universal constant c1 such that

P [|ε(0)| ≥ t|f ,u] ,P [|ε(1)| ≥ t|f ,u] ≤ 2e−c1t2

for all the t > 0 almost surely.

Assumption 7 (Pervasiveness). p
c1
< λmin(B⊤B) ≤ λmax(B

⊤B) ≤ c1p for a constant c1.

Assumption 8 (Weak dependence between f and u). ∥BΣf ,u∥F ≤ c1
√
p for a constant

c1 > 0, where Σf ,u = E[fuT ] ∈ Rr×p is the covariance matrix between f and u.

Assumption 9 (Function Class and ReLU Hyperparameters). The true response and propen-
sity functions satisfy µ∗

0 ∈ H(r + |J0|, l,P), µ∗
1 ∈ H(r + |J1|, l,P), π∗ ∈ H(r + |J2|, l,P) for

some bounded constants r, l, |J0|, |J1|, |J2|, and P has the dimension-adjusted smoothness
γ∗ > 1

2
+ c0 for a constant c0 > 0, where γ∗ is given by (5)). The following conditions on the

deep ReLU network hyperparameters hold for constants c1, . . . , c6 which only depend on l
and P of {H(r + |Jj|, l,P)}j=0,1,2.

c1 ≤ L ≤ c2, c3 log n ≤ logB ≤ c4 log n, r ≤ r ≲ c3

c5(n/ log n)
1

4γ∗+2 ≤ N ≤ c6(n/ log n)
1

4γ∗+2 .
(15)

Remark 5 (Discussion of the assumptions). Assumption 1 and Assumption 2 are standard in
the deep learning literature (Kohler and Langer, 2021; Fan et al., 2024). Assumption 3 is also
standard in the Causal Inference literature (Hirano et al., 2003), which ensures that there are
no unmeasured confounders. Assumption 4 through Assumption 7 are also borrowed from
the factor modeling literature (Fan and Gu, 2024). Assumption 8 subsumes the standard
assumption of independence of f and u in the factor modeling literature, which is usually
needed for identifiability of the model (Fan et al., 2021). Assumption 9 provides necessary
constraints on the complexity of the outcome and propensity models to guarantee asymptotic
normality of FIDDLE. This is also standard in the literature of nonparametric regressions
via deep neural networks for achieving optimal mean squared errors (Fan and Gu, 2024) and
the class of functions is indeed very broad, including additive models or more generally the
compositions of low-dimensional functions.
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4.3 Main results

We begin with a guarantee for our proposed diversified projection matrix, as shown in (9).

Theorem 1. The diversified projection matrix W constructed in (9) is a valid diversified
projection under Assumption 4 through Assumption 8. In addition, there exist universal
constants c1, c2, c3 independent of m, p, t, r, r such that

c1 − c2

(
r

√
log p+ t

m
+ r2

√
log r + t

m
+

1
√
p

)
≤ νmin(p−1W⊤B) ≤ νmax(p

−1W⊤B) ≤ c3.

Note that due to our slight modification of the construction of W , we do not require in-
coherent type of conditions. We now present function estimation guarantees. For R̂0, R̂1, R̂2

in (7) and optimization error δopt, define {(ĝt, Θ̂t)}2t=0 as

R̂t

(
ĝt, Θ̂t

)
≤ inf

Θ∈Rp×N

g∈G(L,r̄+N,1,N,M,B)

R̂t (g,Θ) + δopt, t = 0, 1, 2. (16)

Consider the FAST-NN estimators µ̂FAST
0 , µ̂FAST

1 , π̂FAST defined as

µ̂FAST
0 (x) = mFAST (x;W , ĝ0, Θ̂0), µ̂FAST

1 (x) = mFAST (x;W , ĝ1, Θ̂1),

π̂FAST (x) = max
{

1/ log n,min
{
mFAST (x;W , ĝ2, Θ̂2), 1 − 1/ log n

}}
,

(17)

Given any function h and j = 0, 1, define ∥h∥2n,j = 1
nj

∑
i:Ti=j h

2(xi), ∥h∥2n = 1
n

∑n
i=1 h

2(xi),

and ∥h∥22 =
∫
h2(x)dP (x), where P is the law of x. Then we have the following result.

Theorem 2 (Oracle-type inequality for FAST-NN estimator). Suppose that all the assump-
tions in Section 4.2 hold, except for Assumption 9, which is not used in this context. Consider
the FAST model (14) and the FAST-NN estimator obtained by solving (10) and (11) with
N,B large enough such that N ≥ 2(r + max{|Jj| : j = 0, 1, 2}), B ≥ c1rmax{|Jj|}2j=0,

λj ≥ c2
log(njp(N + r)) + L log(BN)

nj

, τ−1
j ≥ c3(r + 1)(BN)L+1(N + r̄)pnj, j = 0, 1

λ2 ≥ c2
log(np(N + r)) + L log(BN)

n
, τ−1

2 ≥ c3(r + 1)(BN)L+1(N + r̄)pn

for some constants c1, c2, c3, and the number of diversified projections r̄ ≥ r. Define

δi,a = inf
g∈G(L,r̄+N,1,N,M,B)

∥g − µ∗
i ∥2∞, i = 0, 1, δ2,a = inf

g∈G(L,r̄+N,1,N,M,B)
∥g − π∗∥2∞,

δi,s =
(N2L+Nr̄)L log(BNn)

n
+ λi|Ji|, δi,f =

|Ji|r · r̄
ν2min(H) · p

, i = 0, 1, 2.

Then, with probability at least 1 − 3e−t, the following holds, for n large enough,

∥µ̂FAST
j − µ∗

j∥22 + ∥µ̂FAST
j − µ∗

j∥2n,j ≤
c4
α2
∗

{
δopt + δj,a + δj,s + δj,f +

t

n

}
, j = 0, 1 (18)

∥π̂FAST − π∗∥22 + ∥π̂FAST − π∗∥2n ≤ c4

{
δopt + δ2,a + δ2,s + δ2,f +

t

n

}
, (19)

where c4 is a constant and α∗ is as given in Assumption 4.
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The results (18),(19) give the mean squared errors for estimating the outcome functions
and propensity score function in terms optimization error, approximation error, complexity
of neural networks, penalization biases, as well as the estimation error of latent factors. The
proof of the above results do not follow from the standard estimation guarantees for FAST-
NN with fixed datasets as in Fan and Gu (2024), as our estimators µ̂FAST

0 and µ̂FAST
1 are

constructed using the random sub-samples corresponding to the treatment group and control
groups. The mean squared errors are measured with respected to the probability measure
of the covariate x and its empirical version.

Next, we present asymptotic and efficiency guarantees of µ̂FIDDLE for estimating µ.

Theorem 3 (Asymptotic normality of FIDDLE). Assume that all the assumptions in Sec-

tion 4.2 hold and that (n/ log n)
1
2
+c1 < p < n100 for some c1 ∈ (0, 1

2
) depending on c0

in Assumption 9. Let µ̂0 = µ̂FAST
0 , µ̂1 = µ̂FAST

1 , π̂ = π̂FAST be as in (17) with δopt <

(n/ log n)−
γ∗

2γ∗+1 and tuning parameters

λj = c2
log(njp(N + r)) + L log(BN)

nj

, τ−1
j = c3(r + 1)(BN)L+1(N + r̄)pnjn, j = 0, 1,

λ2 = c2
log(np(N + r)) + L log(BN)

n
, τ−1

2 = c3(r + 1)(BN)L+1(N + r̄)pn2,

where c2, c3 are constants as in Theorem 3. Then the ATE estimator FIDDLE (12) satisfies

√
n(µ̂FIDDLE − µ) → N(0, σ2),

σ2 = E
[
(µ∗

1(x) − µ∗
0(x) − µ)2 +

Var[y(1)|x]

π∗(x)
+

Var[y(0)|x]

1 − π∗(x)

]
,

and σ2 attains the semiparametric efficiency bound (Hahn, 1998, Theorem 1). In addition,
if r = 0, i.e., x does not have a factor component, then the result holds for any p ≤ n100.

Remark 6 (Discussion of the results). Theorem 3 establishes asymptotic normality and
semiparametric efficiency of FIDDLE even when there is strong dependency among the
covariates. We require only that the dimensionality-adjusted degree of smoothness γ∗ satisfies
γ∗ > 1/2 in Assumption 9. Additionally, our proof shows that if µ∗

0, µ
∗
1, π

∗ have different
dimensionality-adjusted degree of smoothness γ∗0 , γ

∗
1 , γ

∗
2 then we can establish the above

result by only requiring γ∗0γ
∗
2 >

1
4

and γ∗1γ
∗
2 >

1
4
, rather than having γ∗i >

1
2
, i = 0, 1, 2. This

establishes the doubly-robustness of FIDDLE, which relaxes the complexities of outcome
and propensity models. Under the factor model assumptions, the requirement of a large
covariate dimension p is essential to consistently estimating the factor components, see, e.g.,
(Fan and Gu, 2024, Theorem 3). The additional requirement of p > (n/ log n)

1
2
+c1 is imposed

to guarantee the stronger result of asymptotic normality of the AIPW estimator, which can
be removed in the absence of the factor component. This is captured in the second half of
Theorem 3 with the case r = 0. In addition, the asymptotic normality and semiparametric
efficiency hold even when our algorithm uses an overspecified number of factors r̄. Our proof
involves applying empirical process theory to establish a uniform error bound over the set of
possible estimators within complex neural network classes.
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5 Numerical studies

5.1 Candidate methods

We will compare the performance of FIDDLE with the following alternative approaches for
estimating the average treatment effect. See Appendix D for implementation details.

• Vanilla Neural Networks (Vanilla-NN): A baseline variant that replaces FAST-
NN with the trained fully connected neural networks, and with everything else the
same.

• Generative Adversarial Nets for Individualized Treatment Effects (GAN-
ITE): A GAN-based approach (Yoon et al., 2018) that first generates counterfactual
outcomes via a dedicated generator, followed by training an individualized treatment
effect (ITE) estimator. The ATE is estimated by the sample average of the estimated
ITEs.

• Double Robust Forest (DR): A forest-based implementation of the doubly robust
estimator (Bang and Robins, 2005). It jointly estimates the propensity scores and
outcome models using random forests and computes the ATE via the AIPW estimator.

• Double Machine Learning Forest (DML): A double machine learning framework
of Chernozhukov et al. (2018), which employs cross-fitting procedures to estimate nui-
sance parameters and eliminate regularization bias. It utilizes forest learners for both
propensity score and response estimation, then applies double machine learning for
ATE estimation.

• Causal Forest (CF): A nonparametric method based on generalized random forests
(Wager and Athey, 2018; Athey et al., 2019). It estimates the responses by ensembling
classification and regression trees (CART), and computes the ATE by their weighted
difference.

• Causal Forest on Latent Factors (Factor-CF): A variant of the Causal Forest
method applied exclusively to the latent factors f extracted from the covariates x.

• Oracle Inverse Propensity Weighting (Oracle-IPW): Oracle benchmark using
the ground truth propensity scores and corresponding IPW estimator Robins et al.
(2000).

• Oracle Augmented Inverse Propensity Weighting (Oracle-AIPW): Oracle
benchmark using the true response and propensity functions for AIPW (Robins et al.,
1994).

5.2 Analysis with simulated data

We conduct two Monte Carlo experiments using synthetic datasets to evaluate the empirical
performances. The first experiment benchmarks FIDDLE against a range of state-of-the-art
machine learning estimators for the ATE, focusing on performance across varying covariate
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Figure 1: RMSE for different numbers of covariates by candidate ATE estimation methods.

dimensions. The second experiment investigates how FIDDLE behaves as the sample size
increases. In both experiments, the data-generating process incorporates latent factor struc-
tures and nonlinear treatment and outcome models, enabling us to assess the robustness of
estimators in high-dimensional, complex settings. Each experiment is replicated 100 times.
Denote σ(x) = ex

1+ex
, trun{z} = 0.8z + 0.1 for the rest of the paper.

Data Generating Process. We assume that the covariate vector x follows a factor model
with a loading matrix B = (bij)p×r ∈ Rp×r, a vector of latent factors f = (fi)r ∈ Rr,

and an idiosyncratic component u = (ui)p ∈ Rp, with bij
i.i.d∼ Unif(−

√
3,
√

3), fi, ui
i.i.d∼

Unif(−1, 1). The number of factors is fixed at r = 4, and we evaluate performance for
p ∈ {10, 50, 100, 500, 1000, 5000, 10000}. The sample size is set to n = 5000. The propensity
and response models presented below incorporate nonlinear interactions of f and u. We
model π∗(x) as π∗(f ,u) = trun{σ(sin(f1) + tan(f2) + f3 + f4 +

∑5
j=1 uj), } the outcome y

as y = µ∗(f ,u) + T τ ∗(f ,uJ ) + ε, with ε ∼ N (0, 1/4) independent of f ,u and

µ∗(f ,u) = 10 + f1 + f2f3 + sin(f4) + log(5 + u1 + u2u3) + tan(u4) + u5

τ ∗(f ,u) = 5 + f1 + f2 + sin(f3) + tan(f4) + u1 + u2 + sin(u3 + u4) + tan(u5).

The ground truth ATE with the specified model below is E[τ ∗(f ,u)] = 5.

Results with varying covariate dimensions. Fig. 1 shows that the proposed estimator
FIDDLE demonstrates a remarkable advantage over all other non-oracle methods in root
mean squared error (RMSE), achieving consistently superior performance (see Table 1 for
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Model p = 10 p = 50 p = 100 p = 500 p = 1000 p = 5000 p = 10000
Oracle AIPW 0.0255 0.0280 0.0292 0.0267 0.0256 0.0240 0.0248

(0.0021) (0.0020) (0.0020) (0.0018) (0.0019) (0.0017) (0.0016)
FIDDLE 0.4467 0.1295 0.0799 0.0363 0.0300 0.0272 0.0263

(0.0258) (0.0076) (0.0055) (0.0027) (0.0021) (0.0020) (0.0019)
VanillaNN 0.5548 0.2308 0.2039 0.2912 0.4673 0.7028 0.7399

(0.0248) (0.0076) (0.0069) (0.0090) (0.0108) (0.0148) (0.0154)
Ganite 1.9107 2.1582 2.4663 2.4348 2.2871 2.7776 2.7944

(0.0176) (0.0204) (0.0174) (0.0427) (0.0355) (0.0858) (0.0765)
DR 1.1123 1.0588 1.0441 1.0252 1.0095 0.9990 0.9953

(0.0148) (0.0078) (0.0081) (0.0061) (0.0078) (0.0063) (0.0061)
DML 0.8355 0.8263 0.8191 0.8346 0.8340 0.8305 0.8532

(0.0198) (0.0129) (0.0127) (0.0103) (0.0112) (0.0114) (0.0090)
CF 0.9914 1.0214 1.0258 1.0501 1.0449 1.0482 1.0663

(0.0186) (0.0128) (0.0112) (0.0096) (0.0121) (0.0108) (0.0090)
Factor-CF 1.1094 1.1096 1.1094 1.1165 1.1108 1.1080 1.1030

(0.0049) (0.0054) (0.0050) (0.0049) (0.0059) (0.0046) (0.0052)
Oracle IPW 0.4401 0.4783 0.4660 0.4739 0.4114 0.4699 0.3838

(0.0260) (0.0300) (0.0325) (0.0353) (0.0280) (0.0276) (0.0275)

Table 1: RMSE and standard error (in parentheses) of candidate ATE estimation methods
across different covariate dimensions p with fixed sample size n = 5000 and 100 replications.

the exact values and standard errors (SE)). This is due to improved accuracy of FIDDLE in
estimating latent factors and highlights our method’s robustness and ability to leverage latent
factor structure. Remarkably, when p is sufficiently large, FIDDLE attains performance
comparable to that of the oracle-AIPW estimator. These empirical patterns align with the
theoretical guarantees of FIDDLE. Moreover, FIDDLE achieves performance comparable
to the oracle-IPW estimator when the covariate dimension is relatively low and surpasses
it as p increases. In comparison, competing estimators—whether factor-based or neural
network-based—fail to realize similar gains, with no appreciable decline in RMSE as p grows,
underscoring their limitations in handling complex, high-dimensional covariate structures
and nonparametric function learning.

Results for different sample sizes We run the experiments with the previous values of p
and n ∈ {1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}. As shown in Fig. 2 (see
Table 4 for the standard errors (SE) and Fig. 3 for a log− log plot), FIDDLE demonstrates a
pronounced and consistent reduction in both root mean square error (RMSE) as n increases,
across all covariate dimensions p. This trend is particularly evident in high dimensions, where
traditional methods often suffer from instability or bias. The rapid convergence of FIDDLE
with increasing n highlights its statistical efficiency, affirming that the method scales well
even with large dimensionality of the covariates.
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Figure 2: RMSE of FIDDLE for ATE estimation across different sample sizes and covariate
dimensions. Dark regions and light regions indicate high and low RMSE, respectively.

5.3 Application to semi-synthetic image data

In this section, we demonstrate the practical utility of FIDDLE through a semi-synthetic
image-based simulation derived from the Canadian Institute for Advanced Research (CIFAR-
10) dataset. The CIFAR-10 dataset (Canadian Institute For Advanced Research) (Krizhevsky,
2009) is a widely used benchmark in machine learning and computer vision. It consists of
60,000 color images of size 32 × 32 pixels, categorized into 10 different classes. To facilitate
analysis, we reshape the multidimensional array into a two-dimensional matrix X, where
n = 60, 000 observations and p = 32 × 32 × 3 = 3, 072 covariates. The covariate ma-
trix X ∈ Rn×p is normalized and decomposed into its factor structure X = FBT + U ,
where B = (b1, . . . , bp)

T ∈ Rp×r represents the loading matrix, F = (f1, . . . ,fn)T ∈
Rn×r denotes the latent factors, and U = (u1, . . . ,up)

T ∈ Rn×p is the residual compo-
nent with the number of factors r = 4. The unknown factors are estimated via a least-
squares optimization algorithm: minimize

B∈Rp×r,F∈Rn×r

∑n
i=1∥Xi − Bfi∥2 = ∥X − FBT∥2F . We

randomly sample n′ = 5, 000 observations from the entire dataset as x to replicate the
semi-synthetic data-generating process. The factor f̃ is selected from the solution F̃ ,
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corresponding to x, and the residuals are computed as ũ = x − f̃ B̃T . The treatment
T is generated by Bernoulli sampling with probability π∗(x), where π∗(x) is modeled as

π∗(f̃ , ũ) = trun{σ(sin
(
f̃1

)
+
∑4

i=2 f̃i + sin(ũ1) +
∑5

j=2 ũj)} with σ(·), trun(·) are as in Sec-

tion 5.2. We model the outcomes as y = µ∗(f̃ , ũ) + T τ ∗(f̃ , ũ) + ε, where

µ∗(f̃ , ũ) = 10 + f̃1 + sin
(
f̃2

)
+ f̃3f̃4 + ũ1(ũ2 + sin(ũ3)) + ũ4 + ũ5,

τ ∗(f̃ , ũ) = f̃1(f̃2 + 3) + f̃3 + sin
(
f̃4

)
+ sin(ũ1) + ũ2 + ũ3ũ4ũ5,

ε
i.i.d∼ N (0, 1/4), independent of f̃ , ũ.

The ground truth ATE is empirically estimated for each simulation, and all candidate
methods are implemented identically to Section 5.1.

Results. Table 2 reports the root mean squared error (RMSE) and standard error (SE)
of each candidate method on the semi-synthetic CIFAR-10 dataset over 100 replications.
FIDDLE achieves the best performance among all non-Oracle methods. The remarkable
closeness of FIDDLE’s performance to Oracle-AIPW supports our semiparametric efficiency
claim. In contrast, the Vanilla Neural Network (Vanilla-NN) has a substantially higher
MSE, and other methods perform considerably worse. FIDDLE also outperforms the Oracle-
IPW estimator, highlighting the added stability gained through the doubly robust AIPW
framework.

Oracle
AIPW FIDDLE Vanilla

NN GANITE DR DML CF Factor
CF

Oracle
IPW

0.009 0.030 0.282 1.389 1.664 1.427 1.878 1.990 0.448
(0.001) (0.003) (0.012) (0.032) (0.007) (0.007) (0.007) (0.006) (0.030)

Table 2: RMSE and its standard error (in parentheses) of candidate ATE estimation methods
on the semi-synthetic dataset based on CIFAR-10 over 100 replications.

5.4 Application with real dataset from bariatric surgery

We evaluate the causal effect of different bariatric surgery procedures on short-term weight
loss using different candidate ATE estimators. Bariatric surgery remains the most effec-
tive treatment for morbid obesity, achieved by reducing stomach size or altering nutrient
absorption pathways. Our analysis is based on the 2017 Participant Use File (PUF) from
the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program (MB-
SAQIP) (American College of Surgeons, 2025), which collects high-quality, nationwide data
on bariatric surgeries. After preprocessing, the dataset includes 174, 013 patient records with
42 pretreatment covariates, surgery type, and 30-day BMI reduction as the outcome. We
select Sleeve Gastrectomy (Sleeve)—the most widely performed procedure—as the control,
and compare it against four common alternatives as the treatment: Roux-en-Y Gastric By-
pass (RYGB), Adjustable Gastric Band (AGB), Biliopancreatic Diversion with Duodenal
Switch (BPD/DS), and Single Anastomosis Duodeno-Ileal Bypass with Sleeve Gastrectomy
(SADI-S). Table 3 reports the estimated ATE on 30-day BMI reduction, and associated 95%
confidence intervals over 100 replications.
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Surgery RYGB AGB BPD/DS SADI-S
FIDDLE -0.0111 -1.0391 0.3364 -0.5020

(-0.0116, -0.0106) (-1.0516, -1.0266) (0.3109, 0.3620) (-0.5187, -0.4854)
Vanilla NN -0.3814 -1.6807 -0.3670 -1.5438

(-0.3880, -0.3749) (-1.6913, -1.6701) (-0.3860, -0.3479) (-1.5573, -1.5304)
GANITE -0.4511 -2.4651 -1.5018 -2.0452

(-0.5161, -0.3861) (-2.6590, -2.2712) (-1.6552, -1.3484) (-2.1686, -1.9218)
DR -0.0310 -0.7343 0.0307 -0.5118

(-0.0313, -0.0308) (-0.7412, -0.7273) (0.0305, 0.0309) (-0.5178, -0.5058)
DML -0.0154 -0.2403 0.6306 -0.5457

(-0.0160, -0.0148) (-0.2725, -0.2080) (0.6060, 0.6552) (-0.5498, -0.5416)
CF -0.0225 -1.0804 0.2135 -0.6469

(-0.0229, -0.0222) (-1.0815, -1.0792) ( 0.2114, 0.2157) (-0.6488, -0.6451)
Factor-CF -0.0569 -1.0924 0.1749 -0.7773

(-0.0572, -0.0565) (-1.0936, -1.0912) (0.1730, 0.1769) (-0.7787, -0.7759)

Table 3: Estimated ATE and 95% confidence intervals for 30-day BMI reduction by different
procedures, compared with Sleeve as the control.

As shown in Table 3, FIDDLE yields relatively robust results that support the clinical
understanding of the mechanism of each surgical procedure and the expected impact on
short-term weight loss. RYGB shows a small negative ATE, consistent with equivalent short-
term outcomes (Arterburn et al., 2018). AGB demonstrates a substantially negative ATE,
reflecting its restrictive mechanism that produces slower weight loss requiring behavioral
adaptation (Hady et al., 2012). BPD/DS yields a positive ATE, indicating a superior early
reduction in BMI through its combined restrictive-malabsorptive approach (Hutter et al.,
2013). SADI-S shows a moderately negative ATE, providing the first quantitative evidence
that its staged design prioritizes long-term metabolic benefits over immediate weight loss
enhancement (Pereira et al., 2024). Taken together, FIDDLE provides ATE estimates that
support existing knowledge in the medical community– less aggressive procedures produce
smaller short-term benefits, while more invasive techniques correspond to greater reductions
in BMI.

Data availability statement: The data that support the findings of this study is provided
in the 2017 Participant Use File (PUF) from the website of Metabolic and Bariatric Surgery
Accreditation and Quality Improvement Program (MBSAQIP) and the file is available upon
request at their website (American College of Surgeons, 2025).
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A Proof of Theorem 1

Define Σ̂ = 1
m

∑m
i=1 xix

⊤
i and consider the spectral decomposition of Σ̂

Σ̂ =

p∑
i=1

λ̂i · v̂iv̂
⊤
i .

Using the coordinatewise boundedness of {xi}mi=1 we get that each coordinate of Σ̂ is
bounded. Then we use

Σ̂jj =

p∑
i=1

λ̂i(v̂ij)
2, j = 1, . . . p,

which implies

√
λ̂i · v̂i has bounded coordinates for all i = 1, . . . , p. Hence, to show that

W =

[√
λ̂1 · v̂1, . . . ,

√
λ̂r̄ · v̂r̄

]
is a valid diversified projection matrix, it sufficies to ensure

that it is independent of the data that we project using W and that the smallest singular
value of 1

p
W⊤B is large enough. As we use data splitting to construct the diversified

projection matrix, and then use W to project the second half of the data, independence
comes for free. Hence, it is only left to prove the singular value bounds mentioned in the
theorem statement.

To this end, using Weyl’s theorem (Chen et al., 2021, Lemma 2.2) it follows that

|λ̂i − λi(BB⊤)| ≤ ∥Σ̂−BB⊤∥F , i = 1, . . . , p, (20)

where ∥ · ∥F denotes the Frobenius norm. In view of (Fan and Gu, 2024, Lemma 5) we note
that under Assumption 4, Assumption 5, Assumption 8

∥Σ̂−BB⊤∥F ≤ c1p

(
r

√
log p+ t

m
+ r2

√
log r + t

m
+

1
√
p

)
(21)

for a universal constant c1. Note that from Assumption 7 we have that

λi(BB⊤) ∈ (
p

c2
, c2p), i = 1, . . . , r

for a large constant c2. Hence, for m ≥ c3 log p with a large constant c3 > 0 we combine (20)
and (21) with the last display to get

λ̂i ∈ (
p

c4
, c4p), i = 1, . . . , r

for a constant c4 > 0. Next, denoting Wr =

[√
λ̂1v̂1, . . . ,

√
λ̂1v̂r

]
, V̂r = [v̂1, . . . , v̂r] we get

νmin(p−1W⊤B) ≥ νmin(p−1W⊤
r B) ≥ 1√

c4
νmin(p−1/2V̂rB),

where the above inequalities followed using the Courant-Fischer minimax characterization of
the smallest singular value νmin(A) = mindim(U)=1 maxx∈U :∥x∥2=1 ∥Ax∥2 (Dax, 2013, Theorem
1). The rest of the proof follows the strategy of (Fan and Gu, 2024, Proposition 1, Equation
(F.23)), and is omitted here.
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B Proof of Theorem 3

For the section below, we use the following notation. Let P denote the law of the covariate
x. Given any function h = h(x) define

EP [h] =

∫
h dP (x), ∥h∥L2(P ) =

√
EP [h2], En[h] =

1

n

n∑
i=1

h(xi).

We first provide a general result on the asymptotic normality of the AIPW estimator, given
response and propensity estimators µ̂0, µ̂1, π̂

µ̂AIPW =
1

n

n∑
i=1

{(
Tiyi
π̂(xi)

− (1 − Ti)yi
1 − π̂(xi)

)
− (Ti − π̂(xi))

(
µ̂1(xi)

π̂(xi)
+

µ̂0(xi)

1 − π̂(xi)

)}
. (22)

The following result provides conditions on the complexity of possible function classes for
µ̂0, µ̂1, π̂, that guarantees the asymptotic normality of µ̂AIPW. The proof of Theorem 3 will
rely on verifying these assumptions for the neural network classes of the FAST estimators.

Theorem 4. Consider estimators µ̂0, µ̂1, π̂ ∈ F from function class F , that are constructed
from {(yi, Ti,xi)}ni=1. Suppose that with probability 1 − ξ, the estimators satisfy

EP [(µ̂0 − µ∗
0)

2] ≤ δ20, EP

[
(µ̂1 − µ∗

1)
2
]
≤ δ21, EP

[
(π̂ − π∗)2

]
≤ δ22, (23)

for the true response and propensity functions µ∗
0, µ

∗
1, π

∗, where the expectation is taken with
respect to new x given the data. Assume that Ti, πi are independent of yi, conditional on
xi. In addition, suppose that the following also holds true

(i) supf∈F ∥f∥∞ ≤ B̃ for some constant B̃ > 0,

(ii) α < π∗, π̂ < 1 − α for some α ∈ (0, 1/2),

(iii)
√
nδ1δ2
α2 +

√
nδ0δ2
α2 +

√
nξ/α → 0, as n→ ∞,

(iv) limn→∞
(J̃[](δ,F ,L2(P )))2

1{αδ2
√
n<1}αδ

2
√
n+1{αδ2

√
n≥1}

= 0 for δ ∈
{

δ0
α
, δ1
α
, δ2
α2

}
.

Then we have that
√
n
(
µ̂AIPW − µ

)
→ N(0, σ2), where

σ2 = E
[
(µ∗

1(x) − µ∗
0(x) − µ)2 +

Var[y(1)|x]

π∗(x)
+

Var[y(0)|x]

1 − π∗(x)

]
.

Remark 7. The result also outlines the doubly-robust property of the AIPW estimator. Con-
dition (iii) above shows that even when the estimation guarantees of the response functions
are poor, i.e., δ0, δ1 converges to zero slowly, we can still guarantee the above asymptotic
result as long as we have strong estimation guarantees for the propensity score, meaning
δ2δ0 and δ2δ1 converges to zero at a rate n−(1+c) for some constant c > 0. In particular, if
the target functions µ∗

0, µ
∗
1, π

∗ belong to the classes F0,F1,F2 with different dimensionality-
adjusted degree of smoothness parameters γ∗0 , γ

∗
1 , γ

∗
2 (as in Definition 5) respectively, and

22



the estimators µ̂0, µ̂1, π̂ achieves the nonparametric rates δ2i = n
− 2γ∗i

2γ∗
i
+1 , i = 0, 1, 2, then we

can establish the above result by requiring γ∗i γ
∗
2 >

1
4

+ c, rather than individually requiring
γ∗i >

1
2

+ c, i = 0, 1, 2, for some c > 0. The is essentially the doubly robustness property in
terms of the hardness of the target function classes.

Proof of Theorem 4. Let R denote the event in which (23) holds. Then note that showing√
n(µ̂AIPW−µ) converges in distribution is equivalent to showing

√
n(µ̂AIPW−µ)1{R} converges

in distribution. This is because
√
n(µ̂AIPW − µ) is bounded by O(

√
n/α) (in view of the

boundedness of the estimators, the response functions and the outputs), and the difference
of the above terms satisfies

√
nE
[
|µ̂AIPW − µ| · 1{Rc}

]
≤ O(

√
n/α)P[Rc] = O(

√
nξ/α) → 0.

Hence, we will assume without a loss of generality that the event R holds.
For simplicity of notations, we note the following definitions

π∗
i = π∗(xi), π̂i = π̂(xi).

We first note the following decomposition

µ̂AIPW − µ =
1

n

n∑
i=1

Si +R0 +R1 +R2 +R3,

where

Si =
Ti
π∗
i

[yi(1) − µ∗
1(xi)] −

1 − Ti
1 − π∗

i

[yi(0) − µ∗
0(xi)] + µ∗

1(xi) − µ∗
0(xi) − µ,

R0 =
1

n

n∑
i=1

Ti(yi(1) − µ∗
1(xi))

π̂iπ∗
i

(π∗
i − π̂i), R1 =

1

n

n∑
i=1

(1 − Ti)(yi(0) − µ∗
0(xi))

(1 − π̂i)(1 − π∗
i )

(π∗
i − π̂i)

R2 =
1

nπ̂i

n∑
i=1

(π̂i − Ti)(µ̂1(xi) − µ∗
1(xi)), R3 =

1

n(1 − π̂i)

n∑
i=1

(π̂i − Ti)(µ̂0(xi) − µ∗
0(xi)).

We will show below that
√
nRi, i = 0, 1, 2, 3, converges to zero in probability when the

assumptions in the theorem statement are satisfied. Thus, the asymptotic normality of√
n(µ̂AIPW − µ) follows from the previous decomposition. We will use the following result.

Lemma 2. (Vaart and Wellner, 2023, Theorem 2.14.17’) Let F be a class of measurable
functions such that EP [h2] ≤ δ2, ∥h∥∞ ≤ Q for every h ∈ F , and Gn[h] =

√
n(En[h]−EP [h])

based on samples x1, . . . ,xn
iid∼ P . Then there is a constant c > 0 such that

E
[
sup
h∈F

|Gn[h]|
]
≤ cJ̃[] (δ,F , L2(P ))

(
1 +

J̃[] (δ,F , L2(P ))

δ2
√
n

Q

)
.

In view of the above theorem, we will proceed the proofs in the following way.

1. We first show
√
nR0 converges to zero in probability and note that the convergence of√

nR1 can be shown similarly.
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2. Next we show that
√
nR2 converges to zero in probability if

√
nδ1δ2 converges to zero

and note that we can use a similar strategy to show that
√
nR3 converges to zero in

probability whenever
√
nδ0δ2 converges to zero.

We now jump into the details of the above two steps.

1. Note that
√
nR0 = Gn[hπ̂], where

hπ(x) =
T (y(1) − µ∗

1(x))

π(x)π∗(x)
(π∗(x) − π(x))

and π̂ ∈ F2 ≡ {hπ : EP [(π − π∗)2] ≤ δ22, π ∈ F , α < π < 1 − α}. Then for each fixed
hπ ∈ F2 (given by a fixed π ∈ F)

(a) EP [hπ] = EP [EP [hπ|x]] = 0, as given x, y(1) − µ∗
1(x) is uncorrelated with T

(unconfoundedness)

(b) EP [h2π] ≤ Cδ22
α4 for a constant C, as y(1) − µ∗

1(x) is uniformly bounded over all x
and we have assumed that α < π∗, π < 1 − α.

(c) ∥hπ∥∞ ≤ C
α

for a constant C > 0.

Then using Theorem 2 with δ2 =
Cδ22
α4 , Q = C

α
we get that E

[
suphπ∈F2

|Gn(hπ)|
]

con-
verges to zero if the following are satisfied as n→ ∞

J̃[] (δ,F , L2(P )) → 0,
J̃[] (δ,F , L2(P ))

αδ2
√
n

→ 0

which is guaranteed by our assumptions. Consequently,

|
√
nR0| =

∣∣∣Gn[hπ̂]
∣∣∣ ≤ sup

hπ∈F2

|Gn(hπ)| P→ 0.

2. We next bound
√
nR2. Denote

h̃µ1,π(x) =
(π∗(x) − T )

π(x)
(µ1(x) − µ∗

1(x)), h̆µ1,π(x) =
(π(x) − π∗(x))

π(x)
(µ1(x) − µ∗

1(x))

and note that
√
nR2 = Gn

[
h̃µ̂1,π̂

]
+ Gn

[
h̆µ̂1,π̂

]
. Denote

F11 =

{
h̃µ1,π : EP

[
(µ1 − µ∗

1)
2
]
≤ δ21, α < π < 1 − α, ∥µ1∥∞ < B̃, µ1, π ∈ F

}
,

F12 =

{
h̆µ1,π : EP

[
(µ1 − µ∗

1)
2
]
≤ δ21,EP

[
(π − π∗)2

]
≤ δ22,

∥µ1∥∞ < B̃, α < π < 1 − α, µ1, π ∈ F

}
.

Then, it suffices to separately show that

lim
n→∞

sup
h̃µ1,π∈F11

∣∣∣Gn

[
h̃µ1,π

]∣∣∣ = 0, lim
n→∞

sup
h̆µ1,π∈F12

∣∣∣Gn

[
h̆µ1,π

]∣∣∣ = 0.
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(a) We first show limn→∞ suph̃µ1∈F11

∣∣∣Gn

[
h̃µ1,π

]∣∣∣ = 0. For each fixed h̃µ1,π ∈ F11

(given by fixed µ1, π ∈ F)

i. EP [h̃µ1,π] = EP

[
EP

[
h̃µ1,π

∣∣∣x]] = 0, as E[T − π∗(x)|x] has expectation zero.

ii. EP

[
h̃2µ1,π

]
≤ Cδ21

α2 for a constant C, as we assumed that α < π∗, π < 1 − α.

iii. ∥h̃µ1,π∥∞ ≤ C
α

for a constant C > 0 as µ1, µ
∗ are bounded.

Then we apply Theorem 2 with δ2 =
Cδ21
α2 , Q = C

α
to get E

[
suph̃µ1,π∈F1

∣∣∣En(h̃µ1,π)
∣∣∣]

converges to zero if the following are satisfied as n→ ∞

J̃[] (δ,F × F , L2(P )) → 0,
J̃[] (δ,F × F , L2(P ))

αδ2
√
n

→ 0 (24)

which is guaranteed by our assumptions as for any function classes F1,F2

J̃[] (δ,F1 ×F2, L2(P )) ≤ J̃[] (δ,F1, L2(P )) + J̃[] (δ,F2, L2(P )) .

(b) We establish limn→∞ suph̆µ1,π∈F12

∣∣∣Gn

[
h̆µ1,π

]∣∣∣ = 0 using the following subparts

lim
n→∞

sup
h̆µ1,π∈F12

∣∣∣Gn

[
h̆µ1,π

]∣∣∣ = 0, lim
n→∞

√
n · sup

h̆µ1,π∈F12

∣∣∣EP

[
h̆µ1,π

]∣∣∣ = 0 (25)

For showing the first part, we note

i. EP

[
h̆2µ1,π

]
≤ Cδ21

α2 for a constant C, as we assumed that α < π∗, π < 1 − α.

ii. ∥h̆µ1,π∥∞ ≤ C
α

for a constant C > 0 as µ1, µ
∗ are bounded.

Then we apply Theorem 2 with δ2 =
Cδ21
α2 , Q = C

α
and (24) to get

EP

[
sup

h̆µ1,π∈F12

∣∣∣Gn

[
h̆µ1,π

]∣∣∣]→ 0.

For the second expression in (25) using the Cauchy-Schwarz inequality we get

EP [h̆µ1,π] ≤ 1

α

√
EP [(π − π∗)2]EP [(µ1 − µ∗

1)
2]

for every fixed µ1, π such that h̆µ1,π ∈ F12. As all such µ1, π satisfy

EP

[
(µ1 − µ∗

1)
2
]
≤ δ21,EP

[
(π − π∗)2

]
≤ δ22,

we continue the last display to get
√
n suph̆µ1,π∈Fb

∣∣∣E [h̆µ1,π

]∣∣∣ ≤ √
nδ1δ2/α, which

converges to zero in view of our assumptions.
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Proof of Theorem 3. We will verify the conditions in Theorem 4. Note that the conditions
(i) and (ii) are satisfied in view of Assumption 4. Next we check condition (iii) in Theorem 4.
In view of (Fan and Gu, 2024, Theorem 4) we note that there exists a constant c1 such that

δi,a ≤ sup
g∈H(r+|Ji|,l,P)

inf
ĝ∈G(L,r̄+N,1,N,M,B)

∥g − ĝ∥2∞ ≤ c1(n/ log n)−
2γ∗

2γ∗+1 , i = 0, 1, 2.

In view of the definition of δi,s, i = 0, 1, 2 in Theorem 2 we get that there exists a constant
c2 such that

δi,s ≤ c2(n/ log n)−
2γ∗

2γ∗+1 , i = 0, 1, 2.

On the other hand, if r ≥ 1, we use the assumption p > (n/ log n)
1
2
+c for some constant

c > 0. This implies for constants c3 > 0

δi,f ≤ c3(n/ log n)−( 1
2
+c), i = 0, 1, 2.

Note that from the definition of δi,f in Theorem 2, the above error becomes zero if r = 0.

As we do not require p > (n/ log n)
1
2
+c for any other aspects of our proof, we can remove

this requirement when r = 0 and our proof for this specific case follows the remainder of the
arguments. Hence, assuming γ∗ > 1

2
+ c4 for some constant c4 > 0, we get from Theorem 2

that there is an event E with P[E ] ≥ 1 − n−2 and constant c5 ∈ (0, 1
2
) such that

EP [(µ̂FAST
j − µ∗

j)
2] ≤ (n/ log n)−( 1

2
+c5), j = 0, 1,

EP [(π̂FAST − π∗)2] ≤ (n/ log n)−( 1
2
+c5).

Hence, we get that on the event E , our estimators satisfy the requirement (23) with δ20 =

δ21 = δ22 = (n/ log n)−( 1
2
+c5). Call this common value to be δ̃2. Then, the requirement (iii) in

Theorem 4 is satisfied. It remains to prove the condition (iv) in Theorem 4. In view of our

choice of
{
τk, Θ̂k

}2

k=0
we first show that with a high probability∑
i,j

ψτk(Θ̂k,i,j) ≤ c6(n/ log n)
1
2
−c5 , k = 0, 1, 2. (26)

We prove the case for τ1 as the other cases can be proven in a similar way. In view of (45),
choosing t = 2 log n we get that on an event E1 with P[E1] ≥ 1 − 1

n2 , for a constant c̄ > 0

∑
i,j

ψτ1(Θ̂1,i,j) ≤ c̄

(
|J1| +

1

λ1

{
(n/ log n)−

2γ∗
2γ∗+1 + (N2L+Nr̄)

L log(BNn)

n

+
log(np(N + r̄)) + L log(BN)

n

})
. (27)

As our choice of λ1 guarantees λ1 >
log(np)

n
, we get the desired result. Here we used N2 ≍

(n/ log n)
1

2γ∗+1 <
√

n
logn

from Assumption 9. Now we are ready to verify the bracketing

integral requirements in Theorem 4. We first note the following results for deep neural
networks class that we use. A proof is provided later in this section.
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Lemma 3. Consider the set Gm,s defined as

Gm,s =

{
µ1 = mFAST (·;W , g,Θ) ∈ Gm :

∑
i,j

ψτ (Θij) ≤ s, ∥Θ∥max ≤ B

}
. (28)

and denote

A = LN2 + (L+ 1)N +Nr̄ + 1,

C̃ = (M ∨K∥W ∥max)(L+ 1)BL(N + 1)L+1 +KBLNL(N + r̄)p.

Then for all δ > 0

J̃[](δ,Gm,s, L2(P )) ≤ 8

√
log
(
BC̃
)(

τ log(1/τ)
√
A+Np+ 1{δ≥τ}δ log(1/δ)

√
(A+ 2s)

)
.

We now apply Lemma 3 with α = 1
logn

, δ = δ̃
α
, s = c6(n/ log n)

1
2
−c5 and log p ≤ (n/ log n)

1
2
−c̃

for some constant c̃ ∈ (0, 1
2
) and obtain

(log n)
(J̃[](δ,Gm,s, L2(P )))2

δ2
√
n

≤ c8(log n)4 log
(
BC̃
){ 1√

n
+

(A+ 2s) log n√
n

}
→ 0 as n→ ∞,

and

J̃[](δ,Gm,s, L2(P )) ≤ c9(log n)2
√

log
(
BC̃
){

δ +
√
δ2(A+ 2s) log n

}
→ 0 as n→ ∞.

where we used that A ≍ N2 ≍ (n/ log n)
1

2γ∗+1 <
√

n
logn

, given γ∗ > 1
2
.

Proof of Lemma 3. The proof strategy is as follows. Consider the parameter space

U =
{

(Θ, {Wℓ, bℓ}L+1
ℓ=1 ) ∈ [−B,B]Np+A : m(·;W , g,Θ) ∈ Gm,s

}
.

We will first show a bound on logN (ϵ1,U , ∥ · ∥∞) separately for the case ϵ1 > τ and ϵ1 ≤ τ .
Then in view of (Vaart and Wellner, 2023, Theorem 2.7.17) we can use the bound

N[](ϵ1,Gm,s, L2(P)) ≤ N

(
ϵ1

2C̃
,U , ∥ · ∥∞

)
, (29)

where C̃ is as defined in the result statement, and satisfies (Fan and Gu, 2024, Lemma 8)

sup
x∈[−K,K]p

|m(x) − m̆(x)| ≤ C̃∥θ(m) − θ(m̆)∥∞, m, m̆ ∈ Gm,s,θ(m) = {Θ, (Wℓ, bℓ)
L+1
ℓ=1 }.

1. Consider the case ϵ1 ≥ τ : We will use the cover

U(ϵ1) = ∪S⊂[N ]×[p]:|S|=sU(ϵ1, S)
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where

U(ϵ1, S) =

{
[Wℓ]i,j, [bℓ]j ∈

{
−B + ϵ1, · · · ,−B + ϵ1 ·

⌈
2B

ϵ1

⌉}
,

ΘS ∈
{
−B + ϵ1, · · · ,−B + ϵ1 ·

⌈
2B

ϵ1

⌉}s

,ΘSc = 0

}
Then we show that U(ϵ1) is a valid ϵ1-cover of U in the ∥ · ∥∞ norm. Note that∑

i,j

1{|Θi,j |>τ} ≤
∑
i,j

ψτ (Θij) ≤ s.

The above implies, given any T ∈ U , there is a set S ⊂ [n] × [p] with |S| ≤ s such
that ΘSc has all entries with absolute value bounded by τ . As ϵ1 ≥ τ , we can find a
T̃ ∈ U(ϵ1, S) such that ∥T̃−T∥∞ ≤ ϵ1. Hence, U(ϵ1) gives us an ϵ1-cover of U . Note that
the total number of parameters in {Wℓ, bℓ}L+1

ℓ=1 is N(N+r̄)+N+
∑L

ℓ=2N(N+1)+N+1,
which is defined as A in the lemma statement. Then, it is straightforward to check

that U(ϵ1) has at most
⌈
2B
ϵ1

⌉s+A

entries. Next, note that the number of choices for

S ⊂ [N ] × [p] such that |S| = s is
(
Np
s

)
≤ (Np)s. Hence

N (ϵ1,U , ∥ · ∥∞) ≤
⌈

2B

ϵ1

⌉s+A

(Np)s ≤
⌈

2B

ϵ1

⌉s+A

(C̃)s, ϵ1 ≥ τ.

2. Next, we consider ϵ1 < τ :

U(ϵ1) =

{
[Wℓ]i,j, [bℓ]j, [Θ]i,j ∈

{
−B + ϵ1, · · · ,−B + ϵ1 ·

⌈
2B

ϵ1

⌉}}
It is straightforward to show that U(ϵ1) gives an ϵ1-cover of U . As the total number of
parameters in (Θ, {Wℓ, bℓ}L+1

ℓ=1 ) is Np+N(N+r̄)+N+
∑L

ℓ=2N(N+1)+N+1 = Np+A,

U(ϵ1) has at most
⌈
2B
ϵ1

⌉Np+A

entries. Hence

N (ϵ1,U , ∥ · ∥∞) ≤
⌈

2B

ϵ1

⌉Np+A

, ϵ1 < τ.

Combining the above, in view of (29) we get that

log
(
N[](ϵ1,Gm,s, L2(P))

)
≤

{
1{ϵ1<τ} (A+Np) + 1{ϵ1≥τ} (A+ 2s)

}
log

(
1 + 4BC̃

ϵ1

)
.

As BC̃ is large, for all ϵ1 < 1, we can use the inequality log
(

1+4BC̃
ϵ1

)
≤ 4 log

(
BC̃
)

log(1/ϵ1).

Noting the definition of the bracketing integral in Definition 6 we get

J̃[](δ,Gm,s, L2(P ))

≤ 4

√
log
(
BC̃
)(

1{δ<τ}
√
A+Np

∫ τ

0

√
log(1/ε)dε+ 1{δ≥τ}

√
(A+ 2s)

∫ δ

0

√
log(1/ε)dε

)
.

(30)
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Hence, it suffices to bound
∫ δ

0

√
log(1/ϵ) dϵ. Using a change of variable log(1/ϵ) = z2 the

integral can be transformed into 2
∫∞
ν
z2e−z2dz with ν =

√
log(1/δ). To study the last

integral we will use
∫∞
ν
e−(az)2dz. Note that for any a ̸= 0 we have∫ ∞

ν

e−(az)2dz =
1

a

∫ ∞

aν
√
2

2− y2

2 dy =

√
2π

a

(
1 − Φ(aν

√
2)
)
.

Differentiating the above display with respect to a we get (ϕ is the standard Gaussian density)

2a

∫ ∞

ν

z2e−(az)2dz =

√
2π

a2

(
1 − Φ(aν

√
2)
)

+

√
2π

a
ϕ(aν

√
2)ν

√
2.

Plugging in a = 1 and using Mill’s ratio bound 1 − Φ(x) ≤ ϕ(x)
x

for x > 0 we get

2

∫ ∞

ν

z2e−z2dz ≤
√

2πϕ(ν
√

2)

ν
√

2
+
√

2πϕ(ν
√

2)ν
√

2 ≤ e−ν2

ν
√

2
+ ν

√
2e−ν2 .

Finally substituting ν =
√

log(1/δ) we get

∫ δ

0

√
log(1/ϵ) dϵ ≤ δ

√2 log
1

δ
+

1√
2 log 1

δ

 ≤ 2δ log(1/δ).

Then, in view of (30), the result follows. This completes the proof.

C Proof of Theorem 2

Proving the result related to π∗ is similar to the proof of (Fan and Gu, 2024, Theorem 2) as the
proofs depend on the entire sample space, so it is omitted here. We prove the result related to
estimating µ∗

0, µ
∗
1 and the proof differs from the standard functional guarantees in (Fan and

Gu, 2024, Theorem 2) as the above work analyses function estimation with fixed data and
our estimators for µ∗

0, µ
∗
1 are constructed using the random subsamples given by the control

group {(yi,xi, Ti) : Ti = 0} and the treatment group {(yi,xi, Ti) : Ti = 1} respectively. Our
proof will rely on the following auxiliary result. Let Pj denote the conditional law of x given
T = j, j = 0, 1 and define

EPj
[h] =

∫
h(x)dPj(x), En,j[h] =

1

nj

∑
i:Ti=j

h(xi), nj =
n∑

i=1

1{Ti=j}, j = 0, 1.

Lemma 4. Suppose that the conditions in Theorem 2 hold. Then, with probability at least
1 −O(e−t + e−nα2

∗/2), the following holds, for n large enough and j = 0, 1

EPj

[(
µ̂FAST
j − µ∗

j

)2]
+ En,j

[
(µ̂FAST

j − µ∗
j)

2
]
≤ c

α∗

{
δopt + δj,a + δj,s + δj,f +

t

n

}
,

where c is a constant.
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In view of the above result, the proof of Theorem 2 relies on bounding EP using the
conditional expectation EPj

, as Assumption 2 implies that dP (x) = P[T=j]
P[T=j|x]dPj(x) ≤ dPj(x)

α∗
,

for each j = 0, 1. Hence, it remains to prove Lemma 4.
Notations: We use the following notation for the proofs in this section. Given any matrix
B with n rows and a subset J of the index set {1, . . . , n}, let [B]J ,: denote the submatrix
consisting of the rows corresponding to the J index set. In view of (2), define

f̃ =
1

p
W⊤x, H =

1

p
W⊤B. (31)

Given a matrix H ∈ Rr̄×r, r̄ ≥ r with full column rank define H+ to be it’s left inverse
H+ = (H⊤H)−1H⊤. Assume that µ∗

1(x) = µ1(f ,uJ1), i.e., the coordinates corresponding
to J1 are active in the output function µ∗

1. Also define

vn = (N2L+Nr̄)
L log(BNn)

n
, ϱn =

log(np(N + r̄)) + L log(BN)

n
. (32)

Proof of Lemma 4. We only prove results related to µ∗
1 as the result for µ∗

0 is similar. We
first outline the key steps of the proof of Lemma 4.

• Step 1: Show that µ̃1
∗(x) = µ∗

1(H
+f̃ ,xJ1 − [B]J1,:H

+f̃) is close to µ∗
1(f ,uJ1)

EP

[
(µ̃1

∗ − µ∗
1)

2
]
≲

|J1|r · r̄
(νmin(H))2p

= δ1,f , (33)

where EP is the expectation with respect to the unconditional distribution of x. Then
noting that π∗(x) = P[T = 1|x] ∈ (α∗, 1 − α∗) for all x, we get

EP1

[
(µ̃1

∗ − µ∗
1)

2
]
≤

EP

[
(µ̃1

∗ − µ∗
1)

2
]

α∗
= δ1,f/α∗. (34)

• Step 2: Define the function class

Gm =
{
mFAST (x;W , g,Θ) : g ∈ G(L, r̄ +N, 1, N,M,B),Θ ∈ Rp×N , ∥Θ∥max ≤ B

}
(35)

Then there exists µ̃1 ∈ Gm (i.e., with corresponding Θ̃1) such that ∥Θ̃1∥0 ≤ |J1| and

EP

[
(µ̃1 − µ̃1

∗)
2
]
≲ δ1,f + δ1,a. (36)

Similar to (37) we get EP1

[
(µ̃1 − µ̃1

∗)
2
]
≲ (δ1,f + δ1,a)/α∗, which implies

EP1

[
(µ̃1 − µ∗

1)
2
]
≤ 2

(
EP1

[
(µ̃1 − µ̃1

∗)2
]

+ EP1

[
(µ̃1

∗ − µ∗
1)

2
])

≲ (δ1,f + δ1,a)/α∗. (37)

• Step 3: Derive the basic inequality

En,1[(µ̂1
FAST − µ̃1)

2] + 2λ1
∑
i,j

ψτ1(Θ̂1,i,j)

≤ 4En,1[(µ̃1 − µ∗
1)

2] +
4

n1

∑
i∈[n]:Ti=1

εi(1)(µ̂1
FAST (xi) − µ̃1(xi)) + 2λ1|J1| + 2δopt. (38)
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• Step 4: Show that the following event occurs with a probability at least 1 − e−t

Bt,1/2 =

{
∀µ1 = mFAST (·;W , g,Θ) ∈ Gm,

4

n1

∑
i∈[n]:Ti=1

εi(1)(µ1(xi) − µ̃1(xi))

− λ1
∑
i,j

ψτ (Θ1,i,j) ≤
1

2
En,1[(µ1 − µ̃1)

2] + 2

(
vn1 + ϱn1 +

t

n1

)}
. (39)

• Step 5: Show that the following event occurs with a probability 1 − e−t − e−nα2
∗/2

Ct =

{
∀µ1 = mFAST (·;W , g,Θ) ∈ Gm,

1

2
EP1

[
(µ1 − µ̃1)

2]
≤ 1

2
En,1[(µ1 − µ̃1)

2] + 2λ1
∑
i,j

ψτ1(Θi,j) + C5

(
vn1 + ϱn1 +

t

n1

)}
. (40)

• Step 6: We bound the separation between µ∗
1 and µ̃1 from Step 2. For every 0 < t ≤ n,

there is an event At with P[At] ≥ 1 − e−t − e−nα2
∗/2 on which

En,1[(µ̃1 − µ∗
1)

2] ≲
1

α∗

(
δ1,f + δ1,a +

t

n

)
. (41)

• Step 7: We bound En,1[(µ̂1
FAST −µ∗

1)
2]. Using (38), (39) and (41) we get on the event

Bt,1/2

En,1[(µ̂1
FAST − µ̃1)

2] + 2λ1
∑
i,j

ψτ1(Θ̂1,i,j)

≤ 4λ1|J1| + 4δopt + C4

(
vn1 + ϱn1 +

t

n1

)
+
C̃4

α∗

(
δ1,f + δ1,a +

t

n

)
. (42)

Combining the last display and (41) with the following facts

– (µ̂1
FAST − µ∗

1)
2 ≤ 2[(µ̃1 − µ∗

1)
2 + (µ̂1

FAST − µ̃1)
2],

– for n1 ∈ (nα∗/2, n)

vn1 ≲
vn
α∗
, ϱn1 ≲

ϱn
α∗

(43)

we get on E1 = At ∩ Bt,1/2 ∩ D (D is as in Lemma 5) with P[E1] ≥ 1 − e−t − e−nα2
∗/2

En,1[(µ̂1
FAST − µ∗

1)
2] ≲ λ1|J | + δopt +

1

α∗

(
vn + ϱn + δ1,f + δ1,a +

t

n

)
. (44)

31



• Step 8: We bound EP1 [(µ̂1
FAST − µ∗

1)
2]. On the event Ct ∩ D we use (42) to get

EP1

[(
µ̂1

FAST − µ̃1

)2]
≤ En,1[(µ̂1

FAST − µ̃1)
2] + 4λ1

∑
i,j

ψτ1(Θ̂1,i,j) + C5

(
vn1 + ϱn1 +

t

n1

)
≲

1

α∗

(
λ1|J1| + δ1,f + δopt + vn + ϱn +

t

n

)
. (45)

where the last inequality followed using (43). We continue the last display using
∥a + b∥22 ≤ 2(∥a∥22 + ∥b∥22) and (37) to get on the event E2 = Bt,1/2 ∩ Ct ∩ D with

P[E1] ≥ 1 − e−t − e−nα2
∗/2

EP1

[(
µ̂1

FAST − µ∗
1

)2]
≤ 2

(
EP1

[(
µ̂1

FAST − µ̃1

)2]
+ EP1

[
(µ̃1 − µ∗

1)
2])

≲
1

α∗

(
λ1|J1| + δopt + vn + ϱn + δ1,f + δopt +

t

n

)
. (46)

To complete the proof of Lemma 4 we only prove steps 1–6, as the other steps follow
from them via simple algebra. The proof of Steps 1-2 follows from the proof of (Fan and
Gu, 2024, Theorem 2) and uses properties of the functions µ̃1, µ̃1

∗, µ∗
1. Next, we outline the

proof of Step 3. Note that from the definition of ĝ1, Θ̂1 in (16) it follows

1

n1

∑
i∈[n],Ti=1

{
yi − µ̂1

FAST (xi)
}2

+ λ1
∑
i,j

ψτ1(Θ̂1,i,j)

≤ 1

n1

∑
i∈[n],Ti=1

{yi − µ̃1(xi)}2 + λ1
∑
i,j

ψτ1(Θ̃1,i,j) + δopt

Substituting yi = µ∗
1(xi) + εi(1), Ti = 1 in the above expression, we get

En,1[(µ
∗
1 − µ̂1

FAST )2] + λ1
∑
i,j

ψτ1(Θ̂1,i,j)

≤ En,1[(µ
∗
1 − µ̃1)

2] +
2

n1

∑
i∈[n]:Ti=1

εi(1)(µFAST
1 (xi) − µ̃1(xi)) + λ1

∑
i,j

ψτ1(Θ̃1,i,j) + δopt

In view of the construction of Θ̃1 in Step 2 we have∑
i,j

ψτ1(Θ̃1,i,j) ≤ ∥Θ̃1∥0 ≤ |J1|.

Using the last display and 1
2
(µ̂1

FAST − µ̃1)
2 ≤ (µ̂1

FAST − µ∗
1)

2 + (µ∗
1 − µ̃1)

2 we can rearrange
the expressions to derive (38). The proof of Step 4 follows from (Fan and Gu, 2024, Lemma
10) along with a union bound argument. In view of the proof of (Fan and Gu, 2024, Lemma
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10) we note that by defining

Bt,1/2({xi : Ti = 1, i ∈ [n]})

=

{
∀µ1 = mFAST (·;W , g,Θ) ∈ Gm,

4

n1

∑
i∈[n]:Ti=1

εi(1)(µ1(xi) − µ̃1(xi))

− λ1
∑
i,j

ψτ (Θ1,i,j) ≤ 1

2n1

∑
i∈[n]:Ti=1

(µ1(xi) − µ̃1(xi))
2 + 2

(
vn1 + ϱn1 +

t

n1

)}
,

we get P[Bt,1/2({xi : Ti = 1})] ≥ 1 − e−t holds for every fixed realization of {xi : Ti = 1}.
Hence, we can then apply the Law of Total Probability to conclude the statement.

To prove Step 5, define I = {i ∈ [n] : Ti = 1} and let |I| denote the size of I. Note that
conditioned on a fixed realization of I, the points {xi}i∈I are independently distributed with
the distribution P1. Next, we restrict ourselves to the event D = {

∑
i∈[n] Ti ≥ nα∗/2}, which

occurs with a probability at least 1 − e−nα2
∗/2 in view of Lemma 5. In view of the above,

we can first show that for each fixed realization from the event D, the following event holds
with a probability 1 − e−t, for any fixed µ̃1 ∈ Gm

Ct,I =

{
∀µ1 = mFAST (·;W , g,Θ) ∈ Gm,

1

2
EP1

[
(µ1 − µ̃1)

2]
≤ 1

2|I|
∑
i∈I

(µ1(xi) − µ̃1(xi))
2 + 2λ1

∑
i,j

ψτ1(Θi,j) + C5

(
v|I| + ϱ|I| +

t

|I|

)}
.

In addition, by further conditioning on the event in Lemma 5 we get that |I| is of constant
order compared to n. Then we can follow the proof of (Fan and Gu, 2024, Lemma 9) to
show that

P [Ct,I ∩ D] ≥ 1 − e−t − e−nα2
∗/2.

Hence, using the law of total probability we get

P[Ct,I ] ≥ P[Ct,I |D] · P[D] ≥ (1 − e−t)(1 − e−nα2
∗/2) ≥ 1 − e−t − e−nα2

∗/2.

We present the proof of Step 6 below. We will first apply (Fan and Gu, 2024, Lemma 9,
Lemma 10) based on every fixed realization from the event D as in Lemma 5. Note that the
random variables {xi : i ∈ I} are independently and identically distributed. This implies
that for µ∗

1 and µ̃1 ∈ Gm as in Step 2, the following collection of random variables

zi = (µ̃1(xi) − µ∗
1(xi))

2, i ∈ [n], Ti = 1

are independent and satisfies (as µ̃1 ∈ [−M,M ], µ∗
1 ∈ [−M∗,M∗] using Assumption 2)

zi ≤ (M +M∗)2, EP1 [z
2
i ] ≤ (M +M∗)2EP1 [(µ̃1 − µ∗

1)
2] ≲

δ1,f + δ1,a
α∗

,
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Hence, conditioned on n1 we can apply the Bernstein Inequality (Boucheron et al., 2003) to
conclude that with a probability 1 − e−t

En,1[(µ̃1 − µ1)
2] ≤ EP1 [(µ̃1 − µ∗

1)
2] + C

(
δ1,f + δ1,a

α∗

√
t

n1

+
t

n1

)
, (47)

for a constant C > 0. Next we show that n1 ≥ nα∗
2

with a probability at least 1 − e−
nα2

∗
2 . In

view of (47) we use the last display and use a union bound to conclude that there exists a
constant C > 0 such that for all 0 < t ≤ n

P
[
En,1[(µ̃1 − µ∗

1)
2] ≤ C

α∗

(
δ1,f + δ1,a +

t

n

)]
≥ 1 − e−t − e−nα2

∗/2.

Lemma 5. Define the event D = {
∑

i∈[n] Ti ≥ nα∗/2}. Then P[D] ≥ 1 − e−nα2
∗/2.

Proof. Note that as infx π
∗(x) ≥ α∗ we get

∑
i∈[n] Ti are stochastically larger than Z ∼

Binom(n, α∗). Hence, we get for c > 1 to be chosen later

P[n1 ≤
nα∗

c
] ≤ P[Z ≤ nα∗

c
] ≤ P[n− Z ≥ n

(
1 − α∗

c

)
] (48)

Here n−Z ∼ Binom(1−α∗). We will use Chernoff’s inequality for Binomial random variables

Lemma 6. (Boucheron et al., 2003, Section 2.2) For a random variable Z ∼ Binom(m, q),
we have

P [Z ≥ ma] ≤ exp (−mhq(a)) ; q < a < 1, hq(a) = a log
a

q
+ (1 − a) log

1 − a

1 − q
.

Using q = 1 − α∗, a = 1 − α∗/c in the definition of hq(a) in the above result and using
Pinsker’s inequality hq(a) ≥ 2(a−q)2 we get hq(a) ≥ 2α2

∗(c−1)2/c2. Hence we continue (48)
using Lemma 6 to get

P
[
n1 ≤

nα∗

c

]
≤ exp

(
−2nα2

∗(c− 1)2/c2
)
.

Plugging in c = 2 in the above inequality, we get the desired result.

Proof of Theorem 2 for r = 0. The proof here mainly deviates from the proof of the case
r ≥ 1 in establishing (34) and (37). We modify the steps as follows. Note that we have
δ1,f = 0 and r = 0. We also get from r = 0 that µ∗

1(x) = µ∗
1(xJ1). Then, from the definition

of δ1,a as in Theorem 2 note that there exists µ̃1 ∈ Gm (i.e., with corresponding Θ̃1, and Gm

is as defined in (35)) such that ∥Θ̃1∥0 ≤ |J1| and EP

[
(µ̃1 − µ∗

1)
2] ≲ δ1,a. Similar to (37), we

get EP1

[
(µ̃1 − µ̃1

∗)
2
]
≲ δ1,a/α∗. Then the other parts of the proof, from Step 3 onwards,

can be carried out as before. This completes our argument.
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D Empirical Implementation Details

D.1 Parameter choices for candidate methods

The scripts to submit each simulation as a job on the cluster are named identically to the
file for the corresponding Python codes with an extension of ‘.sh’. All the directories in the
Python code are saved relatively, so people can execute the code under any directory without
changing the paths inside the Python scripts. GPUs are recommended to simulate Double
Deep Learning, Vanilla Neural Networks with L2 regularization.

• Factor Informed Double Deep Learning Estimator (FIDDLE): We implement a factor-
augmented sparse throughput deep (FAST) ReLU neural network to estimate the aver-
age treatment effect (ATE). Set the number of epochs in training to be 100, the batch
size to be 64, the learning rate lr = 0.001, the depth of the neural network L = 4,
and the width of the neural network N = 400 and the column number of the diver-
sified projection matrix r = 10. The hyperparameters for the penalty in the FAST
architecture are set to τ = 0.005 and λ = 1.3 log(p)/n. We randomly sample m = 50
unlabeled observations of covariates to pre-train the diversified projection matrix W
and leave the rest of the dataset to estimate the propensity and outcomes models. The
column number of the diversified projection matrix r = 3 only for the experiments on
the MBSAQIP dataset in Section 5.4, due to a smaller number of covariates.

• Vanilla Neural Networks (Vanilla-NN): We adopt a fully connected ReLU neural net-
work with the same number of epochs in training to be 100, the batch size 64, and
the learning rate lr = 0.001, the depth of the neural network L = 4 and the width of
the neural network N = 400. We penalize the loss function by an L2 norm term with
weight λ = 1.

• Generative Adversarial Nets for inference of Individualized Treatment Effects (GAN-
ITE): We adapt the official package published by (van der Schaar Lab, 2025) to im-
plement this method. The hyperparameters for the simulation implementation are
set as default: the hidden dimensions h dim = 100, number of training iterations
num iterations = 5000, the batch size 256, hyperparameters to adjust the loss impor-
tance α = 0.1 and β = 0.

• Double Robust Forest Model (DR): We implement DR by the function econml.dr.DRLearner
from the EconML package (Research, 2025). The propensity score is modeled by
the function sklearn.ensemble.RandomForestClassifier in the package (Pedregosa et al.,
2011) with number of trees n estimators = 100 and the maximum depth of the tree
max depth = 2. Both the outcome and the final model are implemented by the func-
tion sklearn.ensemble.RandomForestRegressor with both models have number of trees
n estimators = 100 and the maximum depth of the tree max depth = 2 separately. We
truncate the min propensity = 0.1, which is the minimum propensity at which to clip
propensity estimates to avoid dividing by zero.

• Double Machine Learning Forest Model (DML): We implement DML by the func-
tion econml.dml.CausalForestDML from the EconML package (Research, 2025). The
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propensity score is modeled by the function sklearn.ensemble.RandomForestClassifier
in the package (Pedregosa et al., 2011) with number of trees n estimators = 100 and the
maximum depth of the tree max depth = 2. The outcome is modeled by the function
sklearn.ensemble.RandomForestRegressor with number of trees n estimators = 100 and
the maximum depth of the tree max depth = 2 separately.

• Causal Forest (CF) on Covariates or Latent Factors: We implement CF by the function
econml.grf.CausalForest from the EconML package (Research, 2025). The parameters
to implement the function are set as default: number of trees n estimators = 100, the
maximum depth of the tree max depth = 50.

D.2 Additional tables and plots

Figure 3: Plot of root mean squared error (RMSE) by FIDDLE performance across different
sample sizes (n) and covariate dimensions (p) among 100 replications (Both x and y axis
plot on a log scale).
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p = 10 p = 100 p = 200 p = 500 p = 1000 p = 2000 p = 5000
n = 1000 0.5247 0.5087 0.5164 0.4310 0.3883 0.3577 0.3557

(0.0342) (0.0167) (0.0166) (0.0139) (0.0130) (0.0145) (0.0134)
n = 2000 0.5333 0.1529 0.2234 0.2606 0.1561 0.0832 0.0651

(0.0299) (0.0089) (0.0079) (0.0074) (0.0086) (0.0120) (0.0150)
n = 3000 0.4744 0.0974 0.0971 0.1430 0.0557 0.0385 0.0480

(0.0251) (0.0057) (0.0040) (0.0058) (0.0037) (0.0026) (0.0106)
n = 4000 0.5631 0.0883 0.0603 0.0617 0.0400 0.0316 0.0325

(0.0282) (0.0058) (0.0031) (0.0041) (0.0025) (0.0018) (0.0025)
n = 5000 0.4457 0.0786 0.0489 0.0374 0.0327 0.0324 0.0271

(0.0239) (0.0044) (0.0030) (0.0029) (0.0022) (0.0019) (0.0018)
n = 6000 0.4654 0.0693 0.0466 0.0324 0.0258 0.0262 0.0255

(0.0231) (0.0035) (0.0026) (0.0023) (0.0018) (0.0022) (0.0018)
n = 7000 0.4629 0.0674 0.0483 0.0304 0.0238 0.0252 0.0250

(0.0240) (0.0044) (0.0037) (0.0023) (0.0017) (0.0016) (0.0018)
n = 8000 0.4349 0.0597 0.0430 0.0279 0.0256 0.0231 0.0229

(0.0213) (0.0033) (0.0026) (0.0024) (0.0019) (0.0019) (0.0017)
n = 9000 0.4795 0.0714 0.0374 0.0255 0.0225 0.0224 0.0188

(0.0242) (0.0054) (0.0026) (0.0020) (0.0014) (0.0014) (0.0014)
n = 10000 0.4217 0.0681 0.0414 0.0239 0.0199 0.0185 0.0207

(0.0200) (0.0038) (0.0021) (0.0015) (0.0013) (0.0016) (0.0013)

Table 4: Root mean squared error and standard error (in parentheses) of our proposed
FIDDLE across different sample sizes (n) and covariate dimensions (p) over 100 replications.
For each n, the first row shows RMSE and the second row shows SE in parentheses.
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