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Clustering is a fundamental tool in statistical machine learning in the
presence of heterogeneous data. Many recent results focus primarily on opti-
mal mislabeling guarantees, when data are distributed around centroids with
sub-Gaussian errors. Yet, the restrictive sub-Gaussian model is often invalid
in practice, since various real-world applications exhibit heavy tail distribu-
tions around the centroids or suffer from possible adversarial attacks that call
for robust clustering with a robust data-driven initialization. In this paper, we
introduce a hybrid clustering technique with a novel multivariate trimmed
mean type centroid estimate to produce mislabeling guarantees under a weak
initialization condition for general error distributions around the centroids.
A matching lower bound is derived, up to factors depending on the number
of clusters. In addition, our approach also produces the optimal mislabeling
even in the presence of adversarial outliers. Our results reduce to the sub-
Gaussian case when errors follow sub-Gaussian distributions. To solve the
problem thoroughly, we also present novel data-driven robust initialization
techniques and show that, with probabilities approaching one, these initial
centroid estimates are sufficiently good for the subsequent clustering algo-
rithm to achieve the optimal mislabeling rates. Furthermore, we demonstrate
that the Lloyd algorithm is suboptimal for more than two clusters even when
errors are Gaussian, and for two clusters when errors distributions have heavy
tails. Both simulated data and real data examples lend further support to both
of our robust initialization procedure and clustering algorithm.

1. Introduction.

1.1. Problem. Clustering is an essential task in statistics and machine learning (Hastie et al.,
2009; Xu and Wunsch, 2005) that has diverse practical applications (e.g., wireless net-
works (Abbasi and Younis, 2007; Sasikumar and Khara, 2012), grouping biological species
(Maravelias, 1999; Pigolotti, López and Hernández-García, 2007), medical imaging (Ng et al.,
2006; Ajala Funmilola et al., 2012) and defining peer firms in finance (Beatty, Liao and Yu,
2013; Fan et al., 2023)). One of the simplest and most studied clustering models is the addi-
tive k-centroid setup, where data points are distributed around one of the centroids according
to some unknown additive error distribution. Mathematically, this model can be described as

Yi = θzi +wi, z1, . . . , zn ∈ {1, . . . , k}, θ1, . . . , θk ∈R
d,(1)

for a given k. Here Y1, . . . , Yn are the data, θg is the centroid corresponding to the g-th
cluster, z = {z1, . . . , zn} are the unknown labels of the data describing which clusters they
belong to, and w1, . . . ,wn are unknown independent errors. Recent advances in the liter-
ature have focused on recovering the labels z. Given any estimate ẑ = {ẑ1, . . . , ẑn} of z,
define the mislabeling error as the proportion of label estimates that do not match the correct
ones: ℓ(z, ẑ) = 1

n

∑n
i=1 1{zi 6=ẑi}. Upon observing the data, the goal is to produce label esti-

mates with a small mislabeling error, equivalent to correctly identifying the inherent cluster
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structure. Accurate clustering is essential for performing many inference tasks relevant to in-
dividual clusters, such as parameter estimation and testing, where the consistency guarantees
degrade with outlying observations.

Unfortunately, given any fixed set of centroids, even with a large data set, it is only possible
to label every point correctly if the error distributions have compact supports and the centroids
are well separated. Consequently, given any distributional assumptions on the clusters, it is
essential to quantify the mislabeling error, which can serve as a benchmark for comparing the
performance of clustering algorithms. Classical works aiming to address the above problem
use the minimum separation of centroids ming 6=h∈[k] ‖θg − θh‖ (usually denoted by ∆) to
characterize the mislabeling error. In essence, given any fixed class of error distributions, we
should be able to identify the clusters more accurately as ∆ goes to infinity.

In addition to answering the above question, it is essential to construct algorithms that
achieve the above mislabeling rate. Major works in this direction mostly study the sub-
Gaussian mixture model with prescribed conditions on the covariance matrices. For exam-
ple, in the Gaussian mixture model, with σ2 > 0 variance in each coordinate, the minimax

optimal mislabeling rate (Lu and Zhou, 2016) is approximately exp
(
−(1 + o(1)) ∆2

8σ2

)
. A

follow-up work (Chen and Zhang, 2021) also studied the anisotropic covariance structure
in this context. In most such works, the clustering techniques involve some variation of
Lloyd’s algorithm with a good initialization and often use spectral clustering in the ini-
tial phase for dimension reduction (Abbe, Fan and Wang, 2022). However, the restrictive
sub-Gaussian model is often invalid in practice, and various real-world applications of
clustering involve outliers and heavy-tailed error distributions (e.g., image segmentation
(Sfikas, Nikou and Galatsanos, 2007), biology (Song et al., 2005; Ronan, Qi and Naegle,
2016) and financial market (de Miranda Cardoso, Ying and Palomar, 2021; Cai, Le-Khac and Kechadi,
2016)). Unfortunately, the Lloyd algorithm and traditional spectral clustering techniques are
not well suited to handle such situations. For example, Lloyd’s algorithm lacks robustness
guarantees due to the use of sample mean in the centroid estimation step, a common prob-
lem for mean-based clustering algorithms (Charikar et al., 2001; Olukanmi and Twala, 2017;
Gupta et al., 2017). The vanilla version of spectral methods is also vulnerable to noisy setups
(Bojchevski, Matkovic and Günnemann, 2017; Zhang and Rohe, 2018). Robust modification
for obtaining the mislabeling rate in the presence of adversarial outliers has been previously
studied in the literature (Srivastava, Sarkar and Hanasusanto, 2023; Jana, Kulkarni and Yang,
2023), although particularly in the sub-Gaussian settings. Results in the heavy-tail regimes
are lacking, which is the main focus of our work. Notably, (Diakonikolas et al., 2022) stud-
ied the mislabeling minimization problem with different moment constraints. However, their
work only aims to produce a mislabeling rate that is a vanishing proportion of the minimum
cluster size and does not guarantee optimality or quantify the mislabeling.

Additionally, many clustering techniques, such as the Lloyd algorithm and the Expec-
tation Maximization (EM) algorithm, require a good initial approximation of the clusters
to kick off the process. Finding a good initialization in itself is a very challenging task.
For instance, the Lloyd algorithm might not produce consistent clustering with a bad ini-
tialization (Lu and Zhou, 2016). The widely-used algorithm of (Kumar, Sabharwal and Sen,
2004) for mislabeling analysis in sub-Gaussian clustering (Abbe, Fan and Wang, 2022;
Löffler, Zhang and Zhou, 2021; Chen and Zhang, 2021; Srivastava, Sarkar and Hanasusanto,
2023) only provides a good initialization with a small constant probability (Kumar, Sabharwal and Sen,
2004, Theorem 4.1). Another important initialization technique is k-means++ (Arthur and Vassilvitskii,
2007) that starts with a randomly chosen data point as the first centroid and then selects the
subsequent initial centroid estimates according to a probability distribution on the observa-
tions, which puts more weights on points that are farther away from the existing centroid
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approximates. Recently (Patel et al., 2023) used the k-means++ method for centroid initial-
ization; however, the work only addresses the case k = 2 with Gaussian error distributions, in
which case they show that the centroid initialization is good enough to produce a consistent
mislabeling. It is also popular to use spectral methods for centroid initialization; however, the-
oretical guarantees tend to exist only in the sub-Gaussian setup. For example, (Lu and Zhou,
2016) uses the spectral method presented in (Kannan et al., 2009, Claim 3.4), which bounds
the centroid estimation error using the Frobenius norm of the error matrix, and then uses a
concentration of the sub-Gaussian errors to bound it. Unfortunately, such concentration re-
sults fail to work for heavier tails, such as exponential decay. We provide a general solution
to this initialization problem in our work as well.

1.2. Our contributions. In this paper, we characterize the mislabeling rate for a general
class of error distributions and provide clustering and initialization algorithms that provably
achieve the mislabeling rates in these regimes. In particular, suppose that the error distribu-
tions satisfy P [‖wi‖> x] ≤ G(x/σ) for σ > 0 and a decreasing function G : R+ → [0,1],
and the centroids satisfy the separation condition ming,h 6=[k] ‖θg − θh‖ ≥∆. Then, we show
that the optimal mislabeling rate is given by G(∆/2σ), up to constant factors depending
only on k and the minimum cluster proportion. This matches the results for sub-Gaussian
clustering when ∆ is larger than σ

√
d. To achieve the above mislabeling error, we first

construct a clustering algorithm COD (Clustering via Ordered Differences) that achieves
the goal, without knowing G, when a weak initialization condition is met. The COD algo-
rithm follows an iterative clustering style, similar to the k-means and k-medians algorithms
(Jana, Kulkarni and Yang, 2023). More specifically, given either initial centroid estimates or
clustering, we repeat the following steps at each iteration s≥ 1:

• Labeling step: Given an estimate of the centroids θ̂(s)h , construct cluster estimates using
the Euclidean distance

• Estimation step: For each of the estimated clusters, compute the new centroid estimates
θ̂
(s+1)
h using a trimmed mean estimator.

The trimmed mean estimator we use in our algorithm effectively adapts to any decay distribu-
tion G. We also deduce similar results in the presence of adversarial outliers. These outliers
can be the data from missing clusters (underspecified k). Additionally, we also provide an
adaptive centroid estimation algorithm IOD (Initialization via Ordered Differences), whose
guarantees match the initialization condition required by the COD algorithm, leading to an
optimal mislabeling error in this broader context. Our algorithm only requires knowledge
about a lower bound α on the minimum cluster proportion. The IOD algorithm also allows
for the presence of adversarial outliers. Our algorithm uses a recursive technique for finding
data points with dense neighborhoods in the data set, which we use as the centroids. The
runtime of both IOD and COD algorithms are at most ck,α(dn2 +n2 logn) for some constant
ck that depends on k and α. For comparisons with existing methods, we show that even with
good initialization, the Lloyd algorithm fails with heavy-tail error distributions, even when
adversarial outliers need not be present.

1.3. Related works. There is a long list of work that utilizes a robust centroid estima-
tion technique in clustering. The classical partitioning around the medoid (PAM) algorithm
(Kaufman and Rousseeuw, 2009; Rousseeuw and Kaufman, 1987) updates the centroid esti-
mates using a point from the data set (these centroid estimates are referred to as the medoids
of the clusters) based on some dissimilarity metric. For example, (Rousseeuw and Kaufman,
1987) used the ℓ1 distance, and argued the robustness of the corresponding ℓ1 based PAM
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algorithm. The recent work (Jana, Kulkarni and Yang, 2023) uses the coordinatewise me-
dian for centroid estimation. However, given their analyses, a consistent clustering with the
coordinatewise median will require at least σ

√
d separation of the centroids, with some mul-

tiplicative factor depending on the relevant decay function. The coordinatewise median-based
technique is suboptimal since given any constant proportion of mislabeling at a fixed step,
the centroid estimation error of the coordinatewise median scales with

√
d (constant approx-

imation error in each coordinate that adds up). In contrast, the minimum requirement for our
clustering technique is ∆≥ σCG,α where CG,α is a particular quantile of the decay distribu-
tion and α is the proportion of data in the smallest cluster.

Our work resolves the clustering problem for heavy-tail decay conditions based on
the norm of the error vectors. As mentioned above, the minimum centroid separation
our theoretical guarantees require depend on the quantiles of the decay functions and
the minimum cluster proportion. However, this requirement might not be optimal for
specific distribution classes. For example, in the classical sub-Gaussian mixture model,
(Lu and Zhou, 2016) showed that for a fixed number of clusters k and balanced clus-
ter sizes, it suffices to have ∆/σ → ∞ for a consistent clustering with a good initial-
ization. In contrast, our results require ∆/(σ

√
d) → ∞. This can probably be reme-

died first by using a robust principal component analysis or spectral methods for di-
mension reduction, e.g., (Wang and Fan, 2022; Srivastava, Sarkar and Hanasusanto, 2023;
Bojchevski, Matkovic and Günnemann, 2017), and then performing our robust clustering
technique. However, analyses of such methods are left for future work.

In our paper, we also use the adversarial contamination model. In this model, upon observ-
ing the actual data points, powerful adversaries can add new points of their choosing, and our
theoretical results depend on the number of outliers added. This contamination model is ar-
guably stronger than the traditional Huber contamination model (Huber, 1965, 1992), which
assumes that the outliers originate from a fixed distribution via an iid mechanism. Our model
is similar to the adversarial contamination model studied in (Lugosi and Mendelson, 2021;
Diakonikolas et al., 2019) for robust mean estimation. For robust clustering of Gaussian mix-
tures, (Liu and Moitra, 2023) examines a similar contamination model. However, these works
do not study adversarial outliers in the presence of general heavy-tail error distributions, as
is being done in this paper.

Many relevant works on clustering (Lu and Zhou, 2016; Jana, Kulkarni and Yang, 2023;
Vempala and Wang, 2004) try to produce guarantees for accurately estimating the centroids.
In contrast, our clustering technique is geared towards lowering mislabeling and does not
guarantee an efficient estimation of the actual centroids. The analysis of our algorithm shows
that an unbiased centroid estimation is not crucial for achieving asymptotically optimal misla-
beling error if the bias is vanishing compared to the separation of the centroid. Nonetheless,
it might be interesting to determine whether incorporating other centroid estimators in our
setup can provide better centroid estimation while preserving the mislabeling guarantees. A
notable example of centroid estimators that guarantee consistency in the presence of adversar-
ial outliers is Tukey’s half-space median. In the Gaussian setup, this median is consistent even
in the presence of adversarial outliers and produces optimal error rate (Chen, Gao and Ren,
2018, Theorem 2.1). However, the Tukey’s median is computationally expensive. Robust and
consistent mean estimation problem with heavy-tailed data has been studied in much ex-
isting literature (Fan, Li and Wang, 2017; Sun, Zhou and Fan, 2020; Lugosi and Mendelson,
2019); it might be interesting to see whether incorporating such estimation strategies improve
our guarantees.

Another critical related direction is the clustering of anisotropic mixture models, where
the error probabilities decay in particular directions more than others. This differs from our
setup, as our decay condition is independent of any direction. Clustering anisotropic mixtures
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has been studied previously in the sub-Gaussian setup, e.g., in (Chen and Zhang, 2021) using
a variant of the Lloyd algorithm, and (Diakonikolas et al., 2020; Bakshi et al., 2022) with the
target of approximating the mixture distribution in Total Variation distance. Specific heavy-
tail regimes with non-spherical mixtures are also discussed in (Bakshi and Kothari, 2020);
however, they do not characterize the mislabeling in terms of the minimum separation dis-
tance. It would be interesting to study whether modifications of our clustering methodology
can work in such asymmetric clustering paradigms as well.

1.4. Organization. The rest of the paper is organized as follows. In Section 2, we re-
introduce our mathematical model and present the clustering algorithm we use, given a good
initialization. The theoretical results, i.e., mislabeling rate upper bound under good initial-
ization conditions and the worst case mislabeling lower bound are presented in Section 2.3
(the results involving adversarial outliers are presented in Section 2.4) and Section 2.5 re-
spectively. These two results jointly characterize the expected mislabeling as a function of
the minimum centroid separation. As an application of our results, we study the mislabeling
errors for the sub-Gaussian distributions and distributions with moment constraints in Sec-
tion 3. We present our initialization algorithm and their theoretical guarantees in Section 4.
In Section 5 we show that even with good initialization the Lloyd algorithm might produce
non-converging mislabeling errors. We demonstrate the effectiveness of our algorithms with
application on actual and simulated data sets in Section 6. Finally we present proofs of some
lemmas related to the two center initialization problem in Section 7.2. All the other proofs
and technical details have been provided in the appendix.

2. Robust clustering under mislabeling guarantees under good initialization.

2.1. Mixture model. We introduce again our model here. Fix a monotonically decreasing
function with limx→∞G(x) = 0. We say that a random variable w is distributed according
to a G-decay condition with a scale parameter σ, denoted by w ∈Gσ , if

(P) P [‖w‖>σx]<G(x) for all x≥ 0.

For our paper, any monotonic decay condition suffices. We observe independent samples
Y1, . . . , Yn ∈R

d from a mixture of k many Gσ distributions as follows:

Yi = θzi +wi, i= 1, . . . , n, wi ∈Gσ, zi ∈ {1,2, . . . , k}, θh ∈R
d, h ∈ [k],(2)

where z = {zi}ni=1 ∈ [k]n denote the underlying labels, θ1, . . . , θk are the unknown centers
of the data distributions. We study the mislabeling loss function between the estimated labels
ẑ = {ẑi}ni=1 and true labels z = {zi}ni=1 given by

ℓ(ẑ, z) =

[
1

n

n∑

i=1

1{ẑi 6=zi}

]
.(3)

2.2. Algorithm. In this section, we present the algorithm with the assumption that ei-
ther an initial approximation of either the centroids or the labels is available. Our algorithm
follows the following two main steps at each iteration s≥ 1:

• Labeling step: Given an estimate of the centroids θ̂(s)h , construct cluster estimates T (s)
h , h ∈

{1, . . . , k} using a suitable cost function;

• Estimation step: For each of the clusters, compute the new centroid estimates θ̂(s+1)
h using

the points from the estimated cluster
{
Yi : i ∈ T (s)

h

}
.
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This process is iterated until the clusters remain the same over subsequent iterations. For
the labeling step, we rely on the Euclidean distance based Voronoi tessellations of the data
points: Once centroid estimates (θ̂(s)1 , . . . , θ̂

(s)
k ) are available, we compute the label estimates

for Yi as ẑ(s)i = argminh∈{1,...,k} ‖Yi − θ̂
(s)
h ‖, with ties broken arbitrarily. For the centroid

estimation step, we use a novel multivariate trimmed mean algorithm (TMδ) based on the
ordered distances between all points in the estimated clusters; see Algorithm 1.

Algorithm 1 The Trimmed Mean (TMδ) estimator

Input: Set of points S = {X1, . . . ,Xm}, truncation parameter δ

1: Create distance matrix D =
{
Dij : i, j ∈ [m],Di,j = ‖Xi −Xj‖

}

2: for Each i ∈ [m] do

3: Compute the Ri as ⌈(1− δ)m⌉-th smallest number in
{
Dij , j ∈ [m]

}

4: end for

5: Find i∗ = argmini∈[m]Ri.

6: Compute the ⌈(1− δ)m⌉-sized set V ⊆ [m], with a priority to the points closer to Xi∗ , ties broken arbitrarily

V =
{
j ∈ [m] : ‖Xj −Xi∗‖ ≤Ri∗

}

Output: TMδ({X1, . . . ,Xm}) =

∑
j∈V Xj

⌈(1−δ)m⌉

Here is an intuitive explanation of the TMδ estimator. We first aim to find out a center-
ing point Xi∗ from the data set X = {X1, . . . ,Xm} such that the radius of the ball around
Xi∗ that contains ⌈(1− δ)m⌉ many points in X is the smallest. In other words, Xi∗ is the
point among the data that has the tightest neighborhood of points within the set X . Then, the
algorithm computes an average of data points from the tightest neighborhood; indeed, our
analysis will go through even if the output is Xi∗ . Notably, if all the points in X were inde-
pendent and belonged to a certain cluster, say {Yi : i ∈ T ∗

h}, then our analysis, based on an
argument about the quantiles of G, shows that with a high probability the tightest neighbor-
hood will be contained in a ball around θh. The radius of the ball depends on G,σ, δ. Hence,
the estimator TMδ({X1, . . . ,Xm}) will be close to θh. When δ is very small, the estimator
is approximately the sample mean, which is unbiased for θh.

In the main clustering algorithm, we apply the above estimator on approximations of the
true cluster T ∗

h . In this approximated cluster, say Th with a size m, the data points are not
necessarily independent, and there are misclustered points. In such scenarios, we will require
to contain at least half of the points in {Yi : i ∈ Th} to come from {Yi : i ∈ T ∗

h} to make the
estimation meaningful. Let us assume

⌈
m(12 + c)

⌉
points from Th belong to {Yi : i ∈ T ∗

h}.
Then our analysis, using a union bound to deal with the possible dependency issue, shows
that the TMδ algorithm for any 1

2 − c < δ < 1
2 can estimate the centroid θh, albeit with a

bias that depends on G,σ, δ. Notably, with a large enough ∆, the mislabeling errors will be
asymptotically unaffected by this bias.

In view of the above centroid estimation algorithm, we present our primary clustering
technique, the Clustering via Ordered Distances (CODδ), below in Algorithm 2. Our algo-
rithm requires initial centroid or label estimates to kick off the clustering process. With a
lousy initialization, the method can converge to local optima. This is similar to most off-the-
shelf methods like the k-means algorithm, Fuzzy C-means algorithm, EM algorithms, etc.
(Omran, Engelbrecht and Salman, 2007, Section 3). We will provide a novel robust centroid
initialization technique later in Section 4 that will guarantee global optimal mislabeling when
combined with the CODδ algorithm.
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Algorithm 2 The Clustering via Ordered Distances (CODδ) - algorithm

Input: Data {Y1, . . . , Yn}. Initial centroid estimates (θ̂
(0)
1 , . . . , θ̂

(0)
k ) (or initial label estimates

{
ẑ
(0)
i

}n
i=1

).

Maximum number of iterations M . Error threshold ǫ. Truncation level δ ∈ (0, 12 ).

1: Set s = 1
2: for h ∈ {1,2, . . . , k} do

3: Labeling step:
4: if s= 1 and initial label estimates are available then

5: Compute clusters T
(s)
h = {i ∈ {1, . . . , n} : ẑ

(0)
i = h}

6: else

7: Compute the clusters, with ties broken arbitrarily,

T
(s)
h =

{
i ∈ {1, . . . , n} : ‖Yi − θ̂

(s−1)
h ‖ ≤ ‖Yi − θ̂

(s−1)
a ‖, a ∈ {1, . . . , k}, a 6= h

}
,

8: end if

9: Estimation step: Update the new centroid as θ̂
(s)
h = TMδ({Yj : j ∈ T

(s)
h }).

10: end for

11: if s= 1 or {2≤ s <M and 1
k

∑k
h=1 ‖θ̂

(s)
h − θ̂

(s−1)
h ‖2 > ǫ} then

12: Update s← s+ 1 and go back to the Labeling step and repeat
13: end if

Output: (θ̂
(s)
1 , . . . , θ̂

(s)
k ) and ẑ

(s)
i = argminh∈{1,...,k} ‖Yi − θ̂

(s)
h ‖.

2.3. Mislabeling guarantees. To better present our results, we first introduce some nota-
tions. For all h, g ∈ [k], define

(4)
T ∗
h = {i ∈ [n] : zi = h} , T (s)

h =
{
i ∈ [n] : z

(s−1)
i = h

}

n∗h = |T ∗
h | , n

(s)
h =

∣∣∣T (s)
h

∣∣∣ , n(s)hg =
∣∣∣T ∗
h ∩ T (s)

g

∣∣∣

Note that for s≥ 1 this implies

T
(s)
h =

{
i ∈ [n] : ‖Yi − θ̂

(s−1)
h ‖ ≤ ‖Yi − θ̂(s−1)

a ‖, a ∈ [k]
}
.(5)

with ties broken arbitrarily. Let us define the minimum fraction of points in the data set that
come from a single component as

α= min
g∈[k]

n∗g
n
.(6)

Define the cluster-wise correct labeling proportion at step s as

Hs = min
g∈[k]

{
min

{
n
(s)
gg

n∗g
,
n
(s)
gg

n
(s)
g

}}
.(7)

We denote by ∆=ming 6=h∈[k] ‖θg− θh‖ the minimum separation between the centroids. Let

Λs =max
h∈[k]

1

∆
‖θ̂(s)h − θh‖.(8)

be the error rate of estimating the centers at iteration s. Our results are presented based on
the signal-to-noise ratio in the model, defined as

SNR=
∆

2σ
.
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When SNR is constant, given any data point generated from a two cluster mixture distribu-
tion, any algorithm will incorrectly determine the data generating cluster component with a
non-vanishing probability. As a consequence, we only study the mislabeling guarantees as a
function of the SNR only when the SNR is significantly large. We have the following result.

THEOREM 1. Suppose that γ ∈ ( 10
nα ,

1
2 ). Then there exist two constants cG,α > 0 and

CG,α,γ > 0 such that the following hold. If the clustering initialization satisfies

H0 ≥
1

2
+ γ or Λ0 ≤

1

2
−
√
cG,α
SNR

,

then whenever SNR≥CG,α,γ we have that the CODδ algorithm with δ = 1
2 −

γ
4 achieves the

expected mislabeling rate

E

[
ℓ(ẑ(s), z)

]
≤ k2G (SNR− cG,α) + 8ke−

nα

4 , s≥ 2.

REMARK 1. The constants mentioned in Theorem 1 are given by

cG,α =G−1
(
exp

{
−c0
α

})
and CG,α,γ =G−1

(
exp

{
− c0
αγ

})
.

for an absolute constant c0. Note that our proof shows that the dependency on γ in the con-
dition SNR ≥ CG,α,γ can be removed if the centroid based initialization condition on Λ0 is
satisfied.

2.4. Clustering in presence of adversarial outliers. We extend the above results to in-
clude adversarial outliers. We study the setup where an adversary, after accessing the original
data set, adds nout many new points of its choice. In essence, to retain the above mislabel-
ing guarantee, we need to apply a higher value of the truncation parameter δ. We have the
following guarantees.

THEOREM 2. Suppose that γ ∈ ( 10
nα ,

1
2) and an adversary, after analyzing the data

Y1, . . . , Yn coming from the general mixture model (2), adds nout = nα(1−ψ) many outliers

of its choice for some ψ ∈ (0,1]. Then there exist two constants cG,α,ψ > 0 and CG,α,γ,ψ > 0
such that the following hold: If

H0 ≥
1

2
+ γ or Λ0 ≤

1

2
−
√
cG,α,ψ
SNR

,

then whenever SNR≥CG,α,γ,ψ we have that the CODδ algorithm with δ = 1
2− 1

4 min
{
γ, ψ6

}

achieves the expected mislabeling rate

E

[
ℓ(ẑ(s), z)

]
≤ k2G (SNR− cG,α,ψ) + 8ke−

nα

4 , s≥ 2.

Here ẑ(s) is the vector of estimated labels for the real data.

REMARK 2. The constants mentioned in Theorem 1 are given as

cG,α,ψ =G−1

(
exp

{
− c0
αψ

})
and CG,α,γ =G−1

(
exp

{
− c0
α ·min{γ,ψ}

})
.

for an absolute constant c0. Similar to before, the dependency on γ in the condition SNR≥
CG,α,γ,ψ can be removed if the centroid based initialization condition on Λ0 is satisfied. Since
the adversarial data are arbitrary, the result is also applicable to the case that the number of
clusters is under determined. In that case, we can simply regard data beyond the first k class
as adversarial attacks, so long as the total number of such data points are not too large. Then,
Theorem 2 gives an accurate bound on the first k clusters.
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2.5. Optimality of mislabeling: lower bound. In this section we show that it is impossible
to achieve a smaller mislabeling error, up to constants depending on k. Notably, we show
that even when we have a good centroid initialization, the mislabeling error can be as high as
1
8G(SNR) for any fixed k. Suppose that θ∗1, . . . , θ

∗
k are the true centroids, that are known to

us, with minh 6=g ‖θ∗h − θ∗g‖ = ‖θ∗1 − θ∗2‖=∆. Consider the following set of parameters and
labels

P0 =
{
z ∈ [k]n,{θi}ki=1 ∈R

k : θi = θ∗i , i ∈ [k], |{i ∈ [n] : zi = g}| ≥ nα

k
, g ∈ [k]

}

In addition, we assume that the decay function G satisfies the following condition:

(Q) There exists cG > 0 such that G(·) is differentiable in the interval (cG,∞) and
|G′(y)| |y≥cG is monotonically decreasing.

Then we have the following guarantee. The proof is provided in Appendix C.

THEOREM 3. Given any decay function G satisfying (Q), there exists CG > 0 such that

inf
ẑ
sup
P0

E [ℓ(ẑ, z)]≥ 1−α− k/n

4
·G(SNR+CG), ∆≥ σCG.

3. Applications to specific distributions. In this section, we showcase our general re-
sults to two specific mixture models with error distributions having Gaussian tails and poly-
nomial tails.

3.1. Sub-Gaussian mixture model. In this model, the observed data Y1, . . . , Yn ∈R
d are

distributed as

Yi = θzi +wi, i= 1, . . . , n,(9)

where {zi}ni=1 ∈ [k]n denote the underlying unknown component labels of the points, and
{wi}ni=1 denote the error variables distributed independently as zero mean sub-Gaussian vec-
tors with parameter σ > 0 (denoted by wi ∈ SubG(σ)), i.e.,

E

[
e〈a,wi〉

]
≤ e

σ2‖a‖2

2 , for all i ∈ {1, . . . , n} and a ∈R
d.(10)

In order to apply our main results to the sub-Gaussian clustering problem, we need to derive
a decay condition similar to Gσ . To this end, we note the next result from Remark 2.2 of
(Hsu, Kakade and Zhang, 2012): given any t > 0 and w ∈ SubG(σ) we have

P

[
‖w‖2 >σ2 · (d+2

√
dt+ 2t)

]
≤ e−t.(11)

Simplifying the above, we get

P [‖w‖> σ · x]≤ exp
(
−(
√
x2 − d/2−

√
d/2)2/2

)
, x≥

√
d.(12)

Hence we apply Theorem 1 with

G(x) = exp
(
−(
√
x2 − d/2−

√
d/2)2/2

)
, x≥

√
d,

G−1(y) =
(
2 log(1/y) + 2

√
d log(1/y) + d

)1/2
≤
√

2 log(1/y) +
√
d.

(13)

In view of the above, the next result directly follows.
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COROLLARY 4. There are absolute constants c0 and c1 such that the following holds

true. Fix γ ∈ ( 10
nα ,

1
2 ) and suppose that the clustering initialization satisfies either one of the

following conditions

H0 ≥
1

2
+ γ or Λ0 ≤

1

2
− c1(d+1/α)1/4

(SNR)1/2
.

Then, for sub-Gaussian wi, whenever SNR≥ c0(d+ 1/(αγ))1/2, the CODδ algorithm with

δ = 1
2 −

γ
4 achieves the mislabeling rate

E

[
ℓ(ẑ(s), z)

]
≤ exp

{
−1

2

(
SNR− c21(d+ 1/α)1/2

)2
− 2 log k

}
, s≥ 2.

The implications of the above results are the following: whenever SNR is significantly
larger than (d + 1/(αγ))1/2 and log k, the mislabeling rate in the sub-Gausssian mixture
model is approximately exp

(
−∆2/(8σ2)

)
. This matches the theoretical limit for mislabel-

ing proportion in the sub-Gaussian mixture model; see (Lu and Zhou, 2016) for an example
which achieves a similar error rate for the iterative procedure of Lloyd’s algorithm for k-
means. When d is fixed, the initialization conditions stated above are weaker than the con-
ditions required for the Lloyd algorithm. In particular, the initialization condition on H0

for Lloyd’s algorithm depends on the relative distance between the closest cluster centroid
and the farthest cluster centroids, given by λ = maxh 6=g∈[k] ‖θg − θh‖/∆. As the value of
λ increases the Lloyd algorithm requires a stronger initialization condition to guarantee the
optimal mislabeling. Notably, this dependency of initialization condition on λ is necessary
for the Lloyd algorithm to converge as the mean based centroid estimate for any cluster can
be destabilized via contamination from the farthest away clusters. We believe that the de-
pendence on d in the condition involving SNR can be further improved by first running a
spectral method on the dataset and then applying the CODδ algorithm. However, the analysis
is beyond the scope of the current paper.

3.2. Mixture models with moment constraints on the norm. In this section, we explore
the clustering guarantees when the data generating distributions have moment constraints.
We say that a random variable w is distributed according to a p-th moment constraint on the
norm with a scale parameter σ, denoted by w ∈ Rp(σ) for a given p > 0, if it satisfies the
following condition:

(P) There exists x0 > 0 such that P [‖w‖>x]< σp

xp for all x≥ x0. Without a loss of gener-
ality we will assume x0 ≥ σ as otherwise the bound is trivial.

We observe independent samples Y1, . . . , Yn ∈R
d from a mixture of k many Rp(σ) distribu-

tions

Yi = θzi +wi, i= 1, . . . , n, wi ∈Rp(σ), zi ∈ {1,2, . . . , k}, θh ∈R
d, h ∈ [k],(14)

where z = {zi}ni=1 ∈ [k]n denote the underlying labels. The mislabeling proportion for the
estimated labels ẑ produced by the CODδ algorithm is summarized as follows.

THEOREM 5. Suppose that γ ∈ ( 10
nα ,

1
2). Then there exists absolute constants c1, c2 > 0

such that the following hold. If the clustering initialization satisfies

H0 ≥
1

2
+ γ or Λ0 ≤

1

2
− ec1/pα

(SNR)1/2
,
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then whenever SNR≥ ec2/pαγ we have that the CODδ algorithm with δ = 1
2 −

γ
4 achieves the

expected mislabeling rate

E

[
ℓ(ẑ(s), z)

]
≤ k2(SNR− e2c1/pα)−p + 8ke−

nα

4 , s≥ 2.

In addition, this rate is optimal, up to a factor depending on k,α.

Notably, in the above result, we never assume that the error distributions are centered
around zero. As long as there is sufficient decay around the location parameter, our result
states that we should be able to produce good clustering guarantees. Note that the second
term is usually negligible.

4. Provable initialization methods. In this section, we propose centroid initialization
algorithms which guarantee that the conditions on Λ0 required in Theorem 1 are met with
a high probability. We deal with the cases of the two centroids and more than two centroids
separately. The case of more than two centroids follows from a recursive structure which
calls the two-cluster algorithm at the end.

4.1. Two centroids. We first present our initialization algorithm for the two-cluster setup.
Our algorithm revolves around searching for data points with dense neighborhoods. With a
high signal-to-noise ratio, such dense neighborhoods are expected to be close to the cen-
troids. Hence, the data points with a high density neighborhoods can be chosen as good ap-
proximations of the true centroids. Our algorithm for finding such data points is presented in
Algorithm 3: Given a data set with size n and neighborhood size parameter q, the algorithm
outputs a data point with the tightest neighborhood in the data set with at least nq points from
the set.

Algorithm 3 The High Density Point (HDPq) - algorithm

Input: Set of points S = {Y1, . . . , Yn}, neighborhood size parameter q

1: Create distance matrix D =
{
Dij : i, j ∈ [n],Di,j = ‖Yi − Yj‖2

}

2: for Each i ∈ [n] do

3: Compute the Ri as the ⌈nq⌉-th smallest number in
{
Dij , j ∈ [n]

}

4: end for

5: Find i∗ = argmini∈[n]Ri.

Output: Y ∗
i

In view of the above, we present the two centroid initialization algorithm below.
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Algorithm 4 The Initialization via Ordered Distances (IOD 2,m1,m,β)- algorithm with 2 cen-
troids

Input: Data Y1, . . . , Yn, truncation parameter β, batch size m, and initial cluster size m1

1: Compute µ
(1)
1 =HDP m1

n

({Y1, . . . , Yn}).

2: Order the rest of the points in increasing Euclidean distance from µ
(1)
1 .

3: Denote the first m1 points in the list as P
(1)
1 and the rest of the points list as P

(1)
1 in increasing order of

distance form µ
(1)
1 .

4: Compute dist
(1)
1 as the (1− β)m1-th smallest value among the distances from µ

(1)
1 to P

(1)
1 .

5: for ℓ= 1, . . . ,
⌈
n−m1

m

⌉
do

6: Assign µ
(ℓ)
1 = µ

(1)
1 . Compute dist

(ℓ)
1 as the (1−β)m1-th smallest value among the distances from µ

(1)
1

to P
(ℓ)
1

7: Compute µ
(ℓ)
2 = HDP1−β(P

(ℓ)
1 ).

8: Compute dist
(ℓ)
2 as the (1− β)m1-th smallest value among the distances from µ

(ℓ)
2 in the set P

(ℓ)
1 .

9: Store totdist
(ℓ) = dist

(ℓ)
1 + dist

(ℓ)
2 .

10: Move the first m points in the list P
(ℓ)
1 to P

(ℓ)
1 to construct P

(ℓ+1)
1 ,P

(ℓ+1)
1

11: end for

12: Find (µ∗1, µ
∗
2) = (µ

(ℓ∗)
1 , µ

(ℓ∗)
2 ) and totdist

∗ = totdist
(ℓ∗) corresponding to

ℓ
∗ = argmin

ℓ∈{1,...,
⌈
n−m1

m

⌉
−1}

totdist
(ℓ)

.

Output: (µ∗1, µ
∗
2) and totdist

∗ .

The following result describes our choices for the parameters m1,m,β in the above algo-
rithm and the corresponding centroid approximation guarantees.

THEOREM 6. Suppose that out of the n many observed data points there are n∗i many are

from cluster T ∗
i , i= 1,2 and nout many are adversarial outliers. Also assume that n∗1+n∗2+

nout = n and for some constant α > 0 the counts satisfy n∗1, n
∗
2 > nα, nout ≤ nα2

32 . Then there

are constants c1, c2 > 0 such that if ∆ ≥ c1σG
−1
(
e−

c2
α2

)
then the IOD 2,m1,m,β algorithm

with m1 =
⌈
nα
4

⌉
,m=max{1,

⌊
nα2

16

⌋
}, β = α

4 guarantees, for a permutation π on {1,2}

max
i=1,2

‖θπ(i) − µ∗i ‖ ≤∆/3

with probability at least 1− 4e−nα/4.

REMARK 3. Our main result Theorem 1 states that for a large enough SNR, the COD al-
gorithm obtains the optimal mislabeling for any initial centroid approximates that satisfies
Λ0 ≤ 1

2+c for some constant c > 0. In other words, given centroid estimates µ∗1, µ
∗
2 of θ1, θ2

respectively, it is sufficient to satisfy

max
i=1,2

‖θπ(i) − µ∗i ‖=∆Λ0 ≤
∆

2+ c
,(15)

for some c > 0. In view of Theorem 6, our proposed initialization paired with the proposed
COD algorithm leads to an optimal mislabeling.
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We present the idea of the proof below. The details are presented in Section 7.2. For sim-
plicity of notation, given x ∈ R

d and R > 0 let B(x,R) denote the Euclidean ball of radius
R around the point x.

PROOF SKETCH OF THEOREM 6. We apply Algorithm 4 to the full data set {Y1, . . . , Yn}.
The first centroid is chosen by picking the index i∗ ∈ {1, . . . , n} such that the tightest neigh-
borhood around Yi∗ has the smallest radius

Ci =min{C > 0 : |{Y1, . . . , Yn} ∩ B(Yi,C)| ≥m1}, i∗ = argmin
i∈{1,...,n}

Ci.

We show that Yi∗ ∈ ∪i=1,2B(θi, σC̃G,α) for some constant C̃G,α depending on the decay
function G and minimum cluster proportion α. We start by noting the following results about
concentration on the number of points that reside in a neighborhood around the true centroids.
A more general version (Lemma 25) with proof has been provided in Section 7.1.

LEMMA 7. Suppose that n∗i ≥ nα for i ∈ {1,2}. There is an event Ẽ with P

[
Ẽ
]
≥

1 − 4e−
nα

4 on which the following holds with a constant C = σCG,α. For each i ∈ {1,2},

B(θi,C) contains at least n∗i (1− α2

16 ) data points from {Yi : i ∈ T ∗
i }.

The above result implies that outside the set B(θ1,C) ∪ B(θ2,C) there can be at most
nα2

16 points from the dataset. As the minimum distance between the sets B(θ1,C),B(θ2,C) is
∆− 2C , and each set B(θ1,C) contains at least nα2 points, we get that the point Yi∗ , having
the tightest neighborhood with at least m1 =

nα
4 points, will be inside either B(θ1,2C) or

B(θ2,2C). Without a loss of generality, suppose that B(θ1,2C) is the corresponding set, and
we have found an approximation θ̂1 of θ1 via Yi∗ . Denote the first m1 points in the data set
closest to θ̂1 = Yi∗ as P1 and denote the complement set as P1.

In view of the above, it is clear that the inherent challenge in finding a good initialization
lies in obtaining a good approximation of θ2. At this stage, it might seem reasonable to apply
the HDP algorithm again on the remaining set of points P1 to approximate θ2. Unfortunately,
a direct application of the HDP on the set P1 can not guarantee such a good approximation,
as there are at least n∗1− nα

4 ≥ 3nα
4 points in P1∩{Yi : i ∈ T ∗

1 } and the tightest neighborhood
found during the application of HDP can indeed belong to {Yi : i ∈ T ∗

1 }, hence the corre-
sponding output centroid can to be closer to θ1 than θ2. To remedy this issue, we gradually
move m points from P1 to P1, prioritizing the points in P1 that are closer to θ̂1. At each
transfer step, we can compute the corresponding centroid estimate θ̂2, using HDP estimator,
while keeping θ̂1 as it is. To control the stopping point at which we terminate the transfer of
points from P1 to P1 we use a quantile of distances from the centroid estimates θ̂1, θ̂2 within
the sets P1 and P1 respectively. The reason behind using the quantiles of the intra-cluster
distances rather than their sum, which is often used in the k-means type procedures, being
that the quantiles are more robust to outlying observations. Notably, once we transfer a sig-
nificant number of points from P1 that belong to T ∗

1 and keep a substantial number of points
in P1 that belong to T ∗

2 , a second application of the HDP algorithm will guarantee a good
centroid estimate θ̂2. Hence, we end up with reasonable approximates of θ1, θ2

The following result resolves the time complexity to run Algorithm 4.

THEOREM 8. The runtime of IOD 2,m1,m,β is at most O
(

1
β2

(
n2d+ n2 logn

))
.
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PROOF. We first find the point in the data set with the tightest neighborhood of m1 other
points and the corresponding (1−β)-quantile of the distances from it. Computing the tightest
neighborhood of m1 involves all the pairwise distances, which has a time complexity of n2d,
computing the m1/n-quantile of the distances for all the points which has a time complexity
O(n2 logn), and finally computing the minimum which takes O(logn) at most. Once we

have found the first centroid, for each 1 ≤ ℓ ≤ 2/β2 we construct P(ℓ)
1 ,P(ℓ)

1 according to
distances from the first centroid, which takes another n unit time. Next we find the (1− β)

quantiles of the distances from µ
(1)
1 in P(ℓ)

1 , which takes n logn time. We then find the point

in the data set with the tightest neighborhood of (1− β)

∣∣∣∣P
(ℓ)
1

∣∣∣∣ other points in P(ℓ)
1 and the

corresponding (1−β)-quantile of the distances from it. This will again take at mostO(n2d+

n2 logn) time. Combining the above, we get that the total runtime is O(1)
β2

(
n2d+ n2 logn

)
.

A similar idea of approximate cluster centroid initialization has been proposed in
(Kumar, Sabharwal and Sen, 2004). However, the method presented therein does not guar-
antee a low mislabeling error. More specifically, given a set of data points {Y1, . . . , Yn}, the
above paper proposes to produce θ̂1, θ̂2 that guarantees an approximate minimization of the k-
means objective (i.e., partition the data into k sets and then minimize the total within-cluster
variances) up to slack of ǫ > 0

∑

i∈[n]

{
d(Yi,{θ̂1, θ̂2})

}2
≤ (1 + ǫ)

∑

i∈[n]

min
{θ1,θ2}

{d(Yi,{θ1, θ2})}2 , d(x,S) = min
y∈S

{‖x− y‖2}.

Such a minimization procedure can produce a reasonable centroid estimate when the data is
highly concentrated around the centroids, for example, for sub-Gaussian errors. However, it is
unknown whether such a method will work for heavy tail models as in those cases with a high
probability, many observations might behave like outliers. In addition, the aforementioned
paper uses an argument involving sampling a constant number of points from the data set and
then using the sample to represent the entire data to perform the clustering. Consequently, the
final theoretical guarantees the paper obtains hold with a probability γk for a constant γ much
smaller than one. In contrast, our centroid estimation guarantees hold with a probability that
approaches one as the size of the data set increases.

4.2. Algorithm with a general k. To extend the above algorithm for a general cluster
number k we use a recursive framework that utilizes the structure of Algorithm 4. We first
initialize with computing a high-density point from the data set that has the tightest neighbor-
hood (denote it by P) of size m1. This will serve as the first centroid estimate. Then for the
remaining point set (call it P) we recursively apply the clustering algorithm to find the best
k−1 cluster centers. We repeat the process of finding the best k−1 cluster centroids from P
after successively removingm points from P and adding it to P . In each step, say ℓ, we com-
pute an appropriate distance measure similar to totdist

(ℓ) = dist
(ℓ)
1 + dist

(ℓ)
2 in Algorithm 1,

that quantifies the goodness of the optimal clustering at that step. Finally, the centroids gen-
erated in the clustering step with the lowest distance measure is chosen to be the final output.
Whenever we are left with the task of finding the best two centroid cluster estimates from P ,
we resort to IOD2,m1,m,β . The details are provided in Algorithm 5.
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Algorithm 5 The Initialization via Ordered Distances (IOD k,m1,m,β)- algorithm

Input: Data {Y1, . . . , Yn}, k clusters to be found, truncation parameter β, batch size m, initial cluster size m1.

Output: Centroid estimates {µ∗i }
k
i=1 and Error measure totdist

∗
k .

1: if k ≥ 3 then

2: Compute µ
(k,1)
k =HDP m1

n

({Y1, . . . , Yn})

3: Denote the first m1 points closest to µ
(k,1)
k as P

(1)
k and the rest of the points P

(1)
k .

4: for ℓk = 1, . . . ,
⌊
n−m1

m

⌋
do

5: Set µ
(k,ℓk)
k = µ

(k,1)
k and compute

dist
(ℓk)
k = the distance to the (1− β)|P

(ℓk)
k |-th closest point from µ

(k,ℓk)
k in P

(ℓk)
k .

6: Run the IOD k−1,m1,m,β algorithm on the set P
(ℓk)
k and note the outputs:

centroid set {µ
(k,ℓk)
i }k−1

i=1 and error measure as totdist
(ℓk)
k−1.

7: Store totdist
(ℓk)
k = dist

(ℓk)
k + totdist

(ℓk)
k−1.

8: Move the first m points in P
(ℓk)
k , that are closer to µ

(k,1)
k , to P

(ℓk)
k to construct P

(ℓk+1)
k ,P

(ℓk+1)
k

9: end for

10: ℓ∗k = argminℓk totdist
(ℓk)
k , {µ∗i }

k
i=1 = {µ

(k,ℓ∗k)
i }ki=1, totdistk = totdist

(ℓ∗k)
k .

11: else if k=2 then

12: Run the steps IOD 2,m1,m,β algorithm and note the output as {µ∗1, µ
∗
2} and totdist

∗
k .

13: end if

The following result describes a choice of the parameters m1,m,β that guarantees a good
initialization, sufficient to meet the requirements on Λ0 in Theorem 1. Hence, our initializa-
tion algorithm, paired with the clustering technique COD, produces the optimal mislabeling
starting from scratch.

THEOREM 9. Suppose that out of the n many observed data points there are n∗i many

are from cluster T ∗
i , i = 1, . . . , k and nout many are adversarial outliers. Also assume

that
∑k

i=1 n
∗
i + nout = n and for some constant α > 0 the counts satisfy n∗i >

nα
k , i =

1, . . . , k, nout ≤ nα3

64k3 . Then there are constants c1, c2 such that the following is satisfied.

Whenever ∆ > c1kσG
−1
(
e−c2/β

2)
, there is a permutation π of the set [k] that satisfies

maxi∈[k] ‖θπ(i) − µ∗i ‖ ≤ ∆/3 with probability at least 1− 2ke−nα/4k , where the {µ∗i } are

centroid approximations generated via the IOD k,m1,m,β algorithm with

m1 =
⌈nα
4k

⌉
,m=max

{
1,

⌊
nβ2

2

⌋}
, β =

α

4k2
.

In view of Theorem 9, our initialization paired with the COD algorithm leads to an optimal
mislabeling. Notably, the Lloyd algorithm (Lu and Zhou, 2016) and the hybrid k-median
algorithm in (Jana, Kulkarni and Yang, 2023) also required the initialization condition Λ0 <
1/(2 + c), for any constant c > 0, to produce the optimal mislabeling rate in the sub-Gaussian
clustering problem. In view of Section 3, and the proof of Theorem 9 in Appendix E.2, we
note that the constant ck,α,G mentioned above in Theorem 9 is given by σcα

√
d for some

constant cα depending on α. This implies the following.

COROLLARY 10. There is a constant cα depending on α such that the following holds

true. The Lloyd algorithm (Lu and Zhou, 2016) and the hybrid k-median algorithm in
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(Jana, Kulkarni and Yang, 2023) produce the optimal mislabeling rate in the sub-Gaussian

error setup, provided ∆> σcα
√
d.

The following result resolves the time complexity to run Algorithm 5.

THEOREM 11. The runtime of IOD k,m1,m,β is at most (O(1)/β2)k−1(n2d+ n2 logn).

PROOF. As our method is a recursive process, we construct a recursion that relates the
computation time of finding the best k centroids to that of finding k − 1 best centroids.
In the recursion process, when we want to find out the best k centroids from the data, we
first find the point in the data set with the tightest neighborhood of m1 other points and the
corresponding m1

n -quantile of the distances from it. This involves computing all the pairwise
distances, which has a time complexity of O(n2d), computing the (1 − β)-quantile of the
distances for all the points which has a time complexity O(n2 logn), and finally computing
the minimum which takes logn at most. Once we have found the first centroid, for each

1≤ ℓk ≤ 2/β2 we construct P(ℓk)
k ,P(ℓk)

k according to distances from the first centroid, which

takes another n unit time and perform the k − 1 centroid finding algorithm on P(ℓk)
k which

has at most n points. Let Uk be the time complexity of finding the best k-centroids given n
data points. Then in view of the above reasoning we have

Uk ≤ (O(1)/β2) [Uk−1 + n] +O(n2d+ n2 logn).

Solving the above recursion we get

Uk ≤ (O(1)/β2)k−2U2 + (O(1)/β2)k−2
[
n2d+ n2 logn+2n/β2

]
.

Finally noting that via a similar argument the 2-centroid finding problem takes O(1)
β2

(
n2d+ n2 logn

)

time we simplify to get the desired result.

5. Suboptimality of the Lloyd algorithm. In this section, we establish that the Lloyd
algorithm might produce a suboptimal mislabeling even when the initial labels are reason-
ably good, due to non-robust estimate of centroids. In the case of at least three centroids,
even when error distributions have bounded support, if one of the centroids is far away from
the rest, then the mislabeled points originating from that centroid can destabilize the cluster
means and hence lead to poorly estimated centroids. In the two centroid setup, the subopti-
mality occurs when error distributions exhibits heavy tails.

5.1. The case of at least three centroids. For this section, we assume that whenever the
Lloyd algorithm produces an empty cluster, it randomly picks one of the data points as the
missing centroid for the next iteration step. Then we have the following result.

LEMMA 12. Given any β ∈ (0,1), there exists a system of three centroids and an initial-

ization with mislabeling proportion β such that the Lloyd algorithm does not produce better

than a constant proportion of mislabeling.

PROOF. We consider the one dimensional setup with three centroids, located at −∆
2 ,

∆
2

and c∆
2β for some constant c > 2 and sufficiently large ∆. Consider the data generating model

Yi = θzi +wi, i= 1, . . . , n,

wi
iid∼ Uniform(−1,1), zi ∈ {1,2,3}, θ1 =−∆

2
, θ2 =

∆

2
, θ3 =

c∆

2β
.

(16)
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Let T ∗
h = {i ∈ [n] : zi = h}, h ∈ {1,2,3} as before. We assume equal number of points in

all three clusters, i.e., |n∗h| = n/3. To define the initial label estimates, choose any ⌈nβ/3⌉
points from T ∗

3 , say S and take the initialization

ẑ
(0)
i =

{
2 if i ∈ S,
zi otherwise.

(17)

This is a good initialization, except a fraction of β mislabels in class 2.
We now study the iteration steps for the Lloyd algorithm. After the first iteration, assuming

∆ is sufficiently large, the centroid estimates satisfy

θ̂
(0)
1 ≤−∆

2
+ 1, θ̂

(0)
2 ∈

(
(c+ 1)∆

2(1 + β)
− 1,

(c+1)∆

2(1 + β)
+ 1

)
, θ̂

(0)
3 ≥ c∆

2β
− 1.(18)

Note that the above implies that given any data point, it is either closer to θ̂(0)1 or to θ̂(0)3 ,

depending on whether the data is from clusters 1 and 2 or from cluster 3. As a result, T (1)
2 is

empty, and we randomly pick one of the data points as θ̂(1)2 . With a constant probability, the
choice is given by one of the points in {Yi : i ∈ T ∗

3 }. In that scenario, in all subsequent stages

θ
(s)
2 , θ

(s)
3 will continue to be inside the interval ( c∆2β − 1, c∆2β + 1). As a result, all the points

from T ∗
2 are mislabeled. This shows that with constant probability we will have a constant

proportion of mislabeling even if all possible label permutations are considered.

5.2. The case of two centroids. We produce a counter example where k-means algorithm
fails even with a good initialization. Fix ǫ ∈ (0,1). Given any ∆> 0 we choose a sample size
so big that nǫ > 4∆. Next consider the decay function

G(x) =
1

1+ x1−ǫ
, x > 0.(19)

The model we use is

Yi = θzi +wi, i= 1, . . . , n,

wi
iid∼W, P [W >x] =G(x), x > 0, zi ∈ {1,2}, θ1 = 0, θ2 =∆,

(20)

with an equal cluster size. Then given n samples from the above mixture model, we have

P
[
∪ni=1

{
wi >n1+ǫ

}]
= 1− P

[
∩ni=1

{
wi ≤ n1+ǫ

}]

= 1−Πni=1P
[
wi ≤ n1+ǫ

]
= 1−

(
1− 1

1 + n1−ǫ2

)n
≥ 1− e−n

ǫ2

.(21)

This implies that with probability at least 1/2 there is at least one index i∗ such that wi∗ >
n1+ǫ. Then whichever cluster contains Yi∗ , its corresponding centroid estimate will be bigger
than nǫ. Notably, in the next step, when we use the Euclidean distance to cluster estimate, the
best estimated clusters will be of the form

T
(s+1)
1 = {i ∈ [n] : Yi ∈ [0, x]}, T (s+1)

2 = {i ∈ [n] : Yi ∈ (x,∞)}, x= (θ̂
(s)
1 + θ̂

(s)
2 )/2.

As one of the centroid estimates is bigger than nǫ we get that x ≥ nǫ/2 ≥ 2∆. Next we
present the following result about concentration of counts sample quantiles.

LEMMA 13. Fix ǫ0 > 0. Then there is an event Econ
ǫ0 with probability at least 1 − k ·

e−
ming∈[k] n

∗
g

4 on which

∑

i∈T ∗
g

1{ǫ2∆≤‖wi‖} ≤
5n∗g

4 log(1/G(ǫ20∆/σ))
, ǫ≥ ǫ0,∀g ∈ [k].
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A proof of the above result is presented at the end of this section. Note that in view of
Lemma 13, for all large enough ∆ and n we have

P


∑

i∈T ∗
h

1{wi<∆} >
3n

8
, h ∈ {1,2}


≥ 3

4
.

In view of x ≥ 2∆, using the above inequality conditioned on the event ∪ni=1{wi > n1+ǫ}
we have that

P

[
|T̂ (s+1)

1 ∩ T ∗
h | ≥

3n

8
, h ∈ {1,2}

]
≥ 3

4
.

Hence on the event ∪ni=1{wi >n1+ǫ}, that has a probability at least 1/2, there will be at least
3n
8 points that are mislabeled.

PROOF OF LEMMA 13. We define Bi = 1{ǫ20∆≤‖wi‖}. As ǫ ≥ ǫ0, it is enough to find an
event E1 with the said probability on which

P


∑

i∈T ∗
g

Bi ≥
5n∗g

4 log(1/G(ǫ20∆/σ))


≤ e−

n∗
g

4 for each g ∈ [k].(22)

Note that

P
[
ǫ20∆≤ ‖wi‖

]
≤G(ǫ20∆/σ).(23)

This implies
∑

i∈T ∗
g
Bi is stochastically smaller than Binom(n∗g,G(ǫ

2
0∆/σ)). We continue to

analyze (22) via the Chernoff’s inequality in Lemma 24 for the Binomial random variable
Binom(n∗g,G(ǫ

2
0∆/σ)). Let

a=
5

4 log(1/G(ǫ20∆/σ))
, m= n∗g, q = e−5/(4a) =G(ǫ20∆/σ).

Then we have a= 5
4 log(1/q) >

1
log(1/q) ≥ q. Using a log a≥−0.5 for a ∈ (0,1) we get

P



∑

i∈T ∗
g

Bi ≥
5n∗g

4 log(1/G(ǫ20∆/σ))


≤ exp (−mhq(a))

≤ exp

(
−m

(
a log

a

q
+ (1− a) log

1− a

1− q

))

≤ exp
(
−m

{
a log

a

e−5/(4a)
+ (1− a) log(1− a)

})

= exp

(
−m

{
a log a+ (1− a) log(1− a) +

5

4

})
≤ e−n

∗
g/4.(24)

6. Experiments.

6.1. Synthetic datasets. In this section, we evaluate our proposed algorithm (IOD for
initialization and COD for clustering) on synthetic datasets and compare its performance in
terms of the mislabeling proportion with the classical Lloyd algorithm (e.g., the Lloyd–Forgy
algorithm (Lloyd, 1982)). For initializing the Lloyd algorithm, we considers three methods:
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• the proposed IOD algorithm
• the k-means++ algorithm (Vassilvitskii and Arthur, 2006)
• randomly chosen initial centroid estimates from the dataset.

We simulate the data points with the errors {wi} independently from the multivariate tν -
distribution with a scale parameter σ, i.e., the wi random variable has a density

f(x) =
Γ((ν + d)/2)

Γ(ν/2)νd/2πd/2σ

[
1 +

‖x‖2
σν

]−(ν+d)/2

.(25)

We study the effect of different dimension d, degrees of freedom ν for the t-distribution, and
the scale parameter σ. We consider the number of centroids k = 2,3 for our experiments. The
centroids of the cluster components are generated randomly, and then scaled to make sure that
they are at least 25 units apart. For each of the clusters, we generate 200 data points. When
running the IOD initialization method in Algorithm 4, Algorithm 5 and the COD clustering
method in Algorithm 2, we use the parameters

m1 = 20,m= 10, β = 0.05, δ = 0.3.

Our experiments are divided into the following regimes.

• Different degrees of freedom. We fix the data dimension d = 5 and σ = 5. We vary the
degrees of freedom ν in the set {1,1.5,10} to cover the cases of a very heavy tail where
the mean does not exist, a moderately heavy tail where the mean exists but variance does
not, and finally a very light tail where other higher moments exist.

• Different scale parameters. We fix the data dimension d = 10 and ν = 1.5. We vary the
scale parameter σ in the set {1,5,10} to cover the cases of large, moderate, and low signal-
to-noise ratio respectively.

• Different dimensions. The true points are generated with ν = 1.5, σ = 5. We vary the data
dimension d in the set {2,10,30}.

We repeat all the experiment setups 150 times to estimate the mislabeling proportion and
its 95% confidence interval width. The average mislabeling errors are presented in Table 1,
Table 2, Table 3 (along with the confidence interval widths within the parenthesis).

Results. We first present the numerical study describing the effect of ν Table 1. For the
large values of ν = 10 the data are supposed to be highly concentrated around the centroids,
which should guarantee a low mislabeling error. In such a light tail setup, the Lloyd algorithm
should work well, even though its mislabeling optimality is unknown. Nonetheless, our sim-
ulations demonstrate a low mislabeling error for all the algorithms for both k = 2,3. As we
consider heavier tails by decreasing ν to 1.5 we observe a steep increase in the mislabeling
error for all the methods, although our algorithm produces the best performance. Notably, the
Lloyd algorithm, when paired with our proposed IOD initialization method, improves on the
performance of the classical k-means++ initialization technique. However, further decreasing
ν to 1, a setup where even the population mean does not exist, all instances of the Lloyd type
methods perform equally bad, while our algorithm produces significantly lower mislabeling
errors.
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TABLE 1
Effect of degrees of freedom: n= 200k,σ = 5, d= 5,∆= 25

k ν COD + IOD Lloyd + IOD Lloyd + k-means++ Lloyd + random init

2
1 0.322 (0.011) 0.495 (0.002) 0.498 (0.000) 0.497 (0.000)

1.5 0.128 (0.001) 0.322 (0.014) 0.48 (0.006) 0.366 (0.014)
10 0.014 (0.000) 0.013 (0.000) 0.014 (0.000) 0.014 (0.000)

3
1 0.422 (0.005) 0.652 (0.004) 0.664 (0.000) 0.65 (0.005)

1.5 0.364 (0.007) 0.411 (0.009) 0.576 (0.011) 0.403 (0.013)
10 0.043 (0.008) 0.034 (0.007) 0.014 (0.000) 0.081 (0.013)

Next, we demonstrate the effect of the scale parameter σ in Table 2. For fixed ν,∆ this
amounts to studying the effect of SNR= ∆

2σ on the mislabeling error. The proportion of mis-
labeling should decay with large SNR, or equivalently with low σ values, and this is supported
by our demonstrations. Additionally, in all the setups, our algorithm performs significantly
better than its competitors.

TABLE 2
Effect of scale: n= 200k, ν = 1.5, d= 10,∆= 25

k σ COD + IOD Lloyd + IOD Lloyd + k-means++ Lloyd + random init

2
1 0.014 (0.000) 0.029 (0.006) 0.274 (0.018) 0.1 (0.014)
5 0.173 (0.003) 0.424 (0.006) 0.496 (0.001) 0.451 (0.005)
10 0.352 (0.005) 0.492 (0.001) 0.497 (0.000) 0.495 (0.001)

3
1 0.161 (0.012) 0.169 (0.012) 0.27 (0.017) 0.169 (0.013)
5 0.412 (0.001) 0.485 (0.006) 0.654 (0.003) 0.53 (0.008)
10 0.509 (0.003) 0.628 (0.005) 0.664 (0.000) 0.647 (0.004)

In Table 3 we demonstrate how the data dimensions affect the performance of our al-
gorithm. As the data dimension increases, while keeping the centroid separation fixed, the
performance of the clustering algorithm deteriorates This is because the norm of the error
random variables increase proportionally to the square root of the dimension, multiplied with
variability in each coordinate. Nonetheless, we see that our proposed clustering algorithm
perform more robustly compared to the other methods in the simulation studies. It might be
possible to improve all the clustering techniques by applying some sort of dimension reduc-
tion, for example, feature screening approaches (Fan and Fan, 2008) and the spectral methods
in (Löffler, Zhang and Zhou, 2021), to the data set prior to applying the clustering methods.
However, such analysis is beyond the scope of the current work.

TABLE 3
Effect of dimension: n= 200k, ν = 1.5, σ = 5,∆= 25

k d COD + IOD Lloyd + IOD Lloyd + k-means++ k-means + random init

2
2 0.099 (0.001) 0.154 (0.007) 0.398 (0.01) 0.231 (0.01)
10 0.174 (0.004) 0.414 (0.008) 0.495 (0.001) 0.445 (0.006)
30 0.309 (0.01) 0.492 (0.002) 0.497 (0.000) 0.494 (0.002)

3
2 0.156 (0.008) 0.2 (0.009) 0.38 (0.009) 0.236 (0.009)
10 0.41 (0.002) 0.479 (0.009) 0.655 (0.004) 0.528 (0.011)
30 0.467 (0.002) 0.64 (0.002) 0.664 (0.000) 0.653 (0.004)

6.2. Real data experiments. Furthermore, we evaluated our proposed algorithm on the
publicly available Letter Recognition dataset (Slate, 1991). The data set contains 16 primitive
numerical attributes (statistical moments and edge counts) of black-and-white rectangular
pixel displays of the 26 capital letters in the English alphabet. The character images were
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based on 20 different fonts and each letter within these 20 fonts was randomly distorted to
produce a file of 20,000 unique stimuli. We apply our proposed algorithm on this data with
the aim of clustering data points corresponding to the same letters together. Additionally, we
explore the robustness guarantees of the algorithms when some small number of data points
corresponding to other contaminating letter classes are also present. In that setup, the goal is
to minimize the mislabeling error corresponding to the letter classes with larger sample sizes.

Experiment setup. For our experiment, we consider two and three cluster setups. In the
two cluster setup we pick the data points corresponding to the letters "W" and "V" as the
clusters, and in the three cluster setup we pick the data points corresponding to the letters
"X", "M" and "A". In both the setups, we randomly sample 100 points from each cluster
to simulate a contamination free setup. To introduce outliers, in each scenario, we add 20
randomly chosen data points corresponding to the letter "R". Once the data set is prepared,
we apply the following clustering algorithms

• the proposed IOD initialization algorithm and COD clustering algorithm
• the hybrid k-median algorithm in (Jana, Kulkarni and Yang, 2023) for clustering in pres-

ence of adversarial outliers, initialized with the IOD algorithm
• the Lloyd algorithm initialized with the IOD algorithm
• the Lloyd algorithm initialized with the k-means++ algorithm
• the Lloyd algorithm initializations from the dataset.

The relevant parameters for the clustering are the same as those in the simulation studies
section, with only modification being for the value of δ. This is in accordance with The-
orem 2, which proposes that in the presence of outliers it is meaningful to choose a more
robust clustering algorithm, which corresponds to a higher value of δ. For our studies, we
fix δ = 0.48. The entire process, starting from data generation to applying the algorithms, are
independently repeated 150 times to measure the average mislabeling proportion and the cor-
responding 95% confidence bandwidths. The results are presented in Table 4 (the confidence
bandwidths are presented within the parentheses beside the average mislabeling values).

Results. All the results show that our method consistently yields the lowest proportion
of mislabeling, outperforming the other algorithms. Remarkably, our method yields better
mislabeling rate even in absence of outliers. This probably indicates a heavy tail structure
in the data set. Interestingly, in the two cluster setup, the mislabeling proportion reduces in
the presence of data points from the letter class "R". This is possible, as we did not aim to
pick the outlier class that distorts the clustering process, and we rather study the effect of a
certain outlier class. This possibly indicates a similarity of the data points from the outlier
class with one of the clusters, resulting in observing more points in the neighborhood of the
corresponding cluster. When we observe more points in the clusters, the task of separating
the clusters becomes much easier, resulting in a lower mislabeling.

TABLE 4
Results for clustering letters: n= 100k, δ = 0.48, outlier proportion = 20%, outlier class = R

Classes Outliers COD + IOD k-median + IOD Lloyd + IOD Lloyd + k-means++ Lloyd + random

W, V
without 0.276 (0.008) 0.32 (0.005) 0.391 (0.005) 0.355 (0.004) 0.402 (0.004)

with 0.269 (0.008) 0.317 (0.004) 0.381 (0.004) 0.352 (0.004) 0.398 (0.004)

X, M, A
without 0.194 (0.010) 0.245 (0.007) 0.374 (0.004) 0.342 (0.006) 0.357 (0.007)

with 0.264 (0.009) 0.275 (0.006) 0.388 (0.003) 0.354 (0.004) 0.379 (0.005)

7. Proof of the two cluster initialization result (Theorem 6).



22

7.1. Preparation. Our proofs rely on the following high probability guarantees.

LEMMA 14. The following statements hold for the β in Theorem 6. There is an event Ẽ
with P

[
Ẽ
]
≥ 1− 4e−

ming=1,2 n
∗
g

4 on which the following holds for the 2-cluster problem:

(i)
∣∣∣B(θi, σG−1(e−

5

4β2 )) ∩ {Yi : i ∈ T ∗
i }
∣∣∣≥ n∗i (1− β2) for each i= 1,2,

(ii)
∣∣B(θi, ∆32 )∩ {Yi : i ∈ T ∗

i }
∣∣≥ n∗i

(
1− 5

4 log(1/G(∆/(32σ)))

)
for each i= 1,2.

PROOF. The proof of part (i) follows from the proof of Lemma 13 by choosing ǫ20 =
σ
∆G

−1(e−
5

4β2 ) in the lemma. The proof of part (ii) follows from the proof of Lemma 13 by
choosing ǫ20 =

1
16k in the lemma.

7.2. Proof of Theorem 6. In the proof below, we assume that all the mentioned constants
depend on G,α,σ, unless otherwise specified. Let nout be the total number of outliers, i.e.,
n∗1+n

∗
2+n

out = n and nout ≤ nα2

32 . In addition, for our entire analysis we will assume that the

event Ẽ holds, which has a high probability guarantee. We will extensively use the following
definition of order statistics: Given any set V of real numbers and fraction 0< p< 1, define
V {p} as the ⌈p|V |⌉-th smallest number in V . The proof is a combination of the following
results.

LEMMA 15. There is one θi, such that ‖θi − µ
(1)
1 ‖ ≤ 3σG−1(e−

5

4β2 ).

LEMMA 16. There is a stage ℓ+1, with ℓ≥ 1, such that dist
(ℓ+1)
1 > ∆

16 .

LEMMA 17. Suppose that ℓ=min
{
r≥ 1 : dist

(r+1)
1 > ∆

16

}
. Then totdistℓ ≤∆/8.

LEMMA 18. If totdistℓ ≤ ∆
8 , then there is a permutation π of {1,2} such that

max
i=1,2

‖µ(ℓ)i − θπ(i)‖ ≤
∆

3
.

Lemma 15, Lemma 16 and Lemma 17 together implies, provided ∆ is large enough, that
among all of the iterations of our algorithm there is an instance on which the totdistℓ measure
becomes smaller than ∆

8 . As our algorithm finally picks the iteration step ℓ = ℓ∗ with the
lowest totdistℓ measure, it ensures that totdistℓ∗ ≤ ∆

8 . In view of Lemma 18 this implies
maxi=1,2 ‖θπ(i) − µ∗i ‖ ≤∆/3 as required. Below we prove Lemma 15, Lemma 16 and the
rest of the proofs are diverted to Appendix E.1.

PROOF OF LEMMA 15. In view of Lemma 14, there is a constant c1 = σG−1(e−
5

4β2 ) such
that

| {j ∈ [n] : Yj ∈ B(θi, c1)} | ≥ n∗i
(
1− β2

)
, i ∈ {1,2}.(26)

As we have n∗1, n
∗
2 >nα by assumption, it follows that there is a point Yi such that

| {j ∈ [n] : Yj ∈ B(Yi,2c1)} | ≥m1 ≥
nα

4
.

Hence, the tightest neighborhood around any point Yi, i ∈ [n], that contains at least nα/4
points from Y1, . . . , Yn, has a radius of at most 2c1 around that Yi. Define

D(x,S) = {‖x− Yi‖ : i ∈ S} , x ∈R
d, S ⊆ [n].(27)
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Let i∗ be one such index in [n] that satisfies

{D(Yi∗, [n])}{1−
m1
n } = min

j∈[n]
{D(Yj, [n])}{1−

m1
n } .(28)

Then B(Yi∗,2c1) and ∪i=1,2B(θi, c1) can not be disjoint, as in view of (26) the disjointedness
will imply that their union will contain more than n points from Y1, . . . , Yn

|{i ∈ [n] : Yi ∈ B(Yi∗ ,2c1)} ∪ [∪j=1,2 {i ∈ [n] : Yi ∈ B(θj , c1)}]|

≥m1 +
∑

i=1,2

n∗i
(
1− β2

)
=
nα

4
+ (n− nout)(1− β2)≥ n+

nα

4
− nβ2 − nout ≥ n+

nα2

8
,

where we use the fact that {i ∈ [n] : Yi ∈ B(θi, c1)} , i= 1,2 are disjoint sets as ‖θ1 − θ2‖ ≥
∆, n∗1 + n∗2 + nout = n and nout ≤ nα2

16 . Hence, Yi∗ is at a distance at most 3c1 from one of

the true centroids θ1, θ2. Without a loss of generality we can pick µ(1)1 = Yi∗ and we assume

that θ1 is the closer to µ(1)1 than θ2.

PROOF OF LEMMA 16. In view of Lemma 15, let us assume that θ1 is the closest centroid
to µ(1)1 and define c1 = σG−1(e−

5

4β2 ) as before in the proof of Lemma 15 to have

µ
(1)
1 ∈ B (θ1,3c1) , |{Yj : j ∈ T ∗

i } ∩ B (θi, c1)| ≥ n∗i
(
1− β2

)
, i ∈ {1,2}.(29)

We observe the following:

• In view of B(µ(1)1 ,4c1)⊃B(θ1, c1) we get
∣∣∣{Yi : i ∈ [n]} ∩ B(µ(1)1 ,4c1)

∣∣∣≥ |{Yi : i ∈ [n]} ∩ B(θ1, c1)| ≥ nα(1− β2)≥ nα

2
.

As the size of P(1)
1 is at most m1 =

⌈
nα
4

⌉
the distance of µ(1)1 to any point in P(1)

1 is less

than 4c1. As ∆≥ 64c1 the last statement implies dist(1)1 ≤ ∆
16 .

• At the last step, say ℓ̃, in our algorithm, P(ℓ̃)
1 will have at least n−m = n− nα2

16 many
points. In view of (29) we also have

| {Yj : j ∈ [n], Yj ∈ B(θ2, c1)} ∩ P(ℓ̃)
1 | ≥ | {Yj : j ∈ [n], Yj ∈ B(θ2, c1)} | − |P(ℓ̃)

1 |

≥ n∗2
(
1− β2

)
− nα2

16
≥ nα− nα2

16
− nαβ2.

As we have

• the tightest neighborhood in the data set around µ(1)1 with a size at least (1−β)|P(ℓ̃)
1 |, say,

N , will include at least (1− β)(n− nα2

16 )≥ n− nβ − nα2

16 points, and
• (29) implies that {Yj : j ∈ T ∗

2 } ∩ B (θ2, c1) will contain at least nα2 points

we get that

|N |+ |{Yj : j ∈ T ∗
2 } ∩ B (θ2, c1)| ≥ n+

nα

4
.

This implies N ∩ {Yj : j ∈ T ∗
2 ,B (θ2, c1)} is nonempty. Suppose that y is an entry in the

above set. Then we have that the distance of y from µ
(ℓ̃)
1 is at least ∆− 4c1,

‖µ(ℓ̃)1 − y‖ ≥ ‖θ1 − θ2‖ − ‖µ(ℓ̃)1 − θ1‖ − ‖θ2 − y‖ ≥∆− 4c1.

Hence we get dist(ℓ̃)1 ≥∆− 4c1. As ∆> 64c1 we get dist(ℓ̃)1 ≥ ∆
2 as required.
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APPENDIX A: MISLABELING UPPER BOUND IN THEOREM 1

A.1. Preparation. The proof of the performance of the CODδ algorithm is primarily
based in the following two stages:

(a) analyzing accuracy of the clustering method based on current center estimates,
(b) analysis of the next center updates based on current labels.

We obtain results on these steps separately and then combine them to prove Theorem 1. Our
analysis depends on high-probability events Enorm

τ ,Eγ0,ǫ0 given in the following lemmas.

LEMMA 19. Suppose that wi-s are independent random variables satisfying the Gσ-

decay condition and β ∈ (0,1) is fixed. Then given any τ > 0 there is an event Enorm
τ with

probability at least 1− e−0.3n on which the following holds. For any S ⊆ [n] with |S| ≥ nβ,

the cardinality of the set
{
i ∈ S : ‖wi‖2 ≤ σG−1

(
exp

{
−1 + 1/β

τ

})}

is at least (1− τ)|S|.

The following lemma provides results that show a lower bound on Hs+1 based on Λs and
establish an upper bound on Λs in terms of Hs.

LEMMA 20. Fix any ǫ0 ∈ (0, 12 ), γ0 ∈ ( 10
nα ,

1
2). Then whenever ∆, σ > 0 satisfies

5
2α log(1/G(ǫ20∆/σ))

< 1
2 the following holds true. There is an event Eγ0,ǫ0 with a probabil-

ity of at least 1 − 2ke−nα/4 − e−0.3n on which for all s ≥ 0, the CODδ algorithm with

δ ∈ (12 −
γ0
4 ,

1
2) ensures:

(i) if Λs ≤ 1
2 − ǫ0 then Hs+1 ≥ 1− 5

2α log(1/G(ǫ20∆/σ))
,

(ii) if Hs+1 ≥ 1
2 + γ0 then Λs+1 ≤ 8σ

∆G
−1
(
exp

{
−1+2/α

τ

})
, where τ = γ0

1+2γ0
.

PROOF OF LEMMA 20. We first prove part (i). For any g 6= h ∈ [k]× [k],

1{zi=g,ẑ(s+1)
i =h} ≤ 1{‖Yi−θ̂(s)h ‖2≤‖Yi−θ̂

(s)
g ‖2, i∈T ∗

g }
= 1{‖θg+wi−θ̂(s)h ‖2≤‖θg+wi−θ̂

(s)
g ‖2} = 1{‖θg−θ̂(s)h ‖2−‖θg−θ̂

(s)
g ‖2≤2〈wi,θ̂

(s)
h −θ̂

(s)
g 〉}.(30)

The triangle inequality and the fact ‖θh − θ̂
(s)
h ‖ ≤ Λs∆≤ Λs‖θg − θh‖ implies

‖θg − θ̂
(s)
h ‖2 ≥

(
‖θg − θh‖ − ‖θh − θ̂

(s)
h ‖
)2

≥ (1−Λs)
2‖θg − θh‖2.

This implies, using the fact that (1− x)2 − y2 ≥ (1− x− y)2 when y(1− x− y)≥ 0, that

‖θg − θ̂
(s)
h ‖2 −‖θg − θ̂(s)g ‖2

≥ (1−Λs)
2‖θg − θh‖2 −Λ2

s‖θg − θh‖2 ≥ (1− 2Λs)
2‖θg − θh‖2.(31)

In view of the last inequality, using the fact

|〈wi, θ̂(s)h − θ̂(s)g 〉| ≤ ‖wi‖ · ‖θ̂(s)h − θ̂(s)g ‖

≤ ‖wi‖ · (‖θ̂(s)h − θh‖+ ‖θ̂(s)h − θh‖+ ‖θg − θh‖)≤ ‖wi‖(2Λs +1)‖θg − θh‖,
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we continue (30) to get

1{zi=g,ẑ(s+1)
i =h} ≤ 1{

(1−2Λs)2

2(1+2Λs)
‖θg−θh‖≤‖wi‖

}.(32)

Simplifying above with Λs ≤ 1
2 − ǫ0

1{zi=g,ẑ(s+1)
i =h} ≤ 1{ǫ20‖θg−θh‖≤‖wi‖}(33)

Summing 1{zi=g,ẑ(s+1)
i =h} over

{
i ∈ T ∗

g

}
, in view of Lemma 13, we get on the set Econ

ǫ0

n
(s+1)
gh ≤

∑

i∈T ∗
g

1{ǫ20∆≤‖wi‖} ≤
5n∗g

4 log(1/G(ǫ20∆/σ))
, ∀h∈ [k], h 6= g.(34)

Using the last display and noting that k ≤ 1
α and n∗g ≥ nα we get

∑
h∈[k]

h6=g

n
(s+1)
gh

n∗g
≤ 5k

4 log(1/G(ǫ20∆/σ))
≤ 5

4α log(1/G(ǫ20∆/σ))
.(35)

Next we switch g,h in (34) and sum over h ∈ [k], h 6= g. We get on the event Econ
ǫ0

∑

h∈[k]

h6=g

n
(s+1)
hg ≤

5
∑

h∈[k],h 6=g n
∗
h

4 log(1/G(ǫ20∆/σ))
≤ 5n

4 log(1/G(ǫ20∆/σ))
.

Using the relation between ǫ0,∆, σ,α in the lemma statement we get
∑

h∈[k]

h6=g

n
(s+1)
gh

n∗g
≤ 1

2
,

which implies

n(s+1)
g ≥ n(s+1)

gg = n∗g −
∑

h∈[k]

h6=g

n
(s+1)
gh ≥ 1

2
n∗g ≥

1

2
nα.

This gives us
∑

h 6=g n
(s+1)
hg

n
(s+1)
g

≤ 5

2α log(1/G(ǫ20∆/σ))
.

Using the above with (35) we get with probability 1− 2kn−c/4

Hs+1 = 1−max





∑
h 6=g n

(s+1)
gh

n∗g
,

∑
h 6=g n

(s+1)
hg

n
(s+1)
g



≥ 1− 5

2α log(1/G(ǫ20∆/σ))
.

Next we present below the proof of Lemma 20(ii). We use Proposition 21 provided below.

PROPOSITION 21. Suppose given any τ ∈ (0,1), there is a event Fτ and a num-

ber Dτ > 0 such that, on Fτ , for any S ⊆ [n] with |S| > nα
2 , the cardinality of the set

{i ∈ S : ‖wi‖2 ≤Dτ} is at least (1− τ)|S|. Then for any γ ∈ (10/nα,1/2), using τ = γ
1+2γ ,

we get that on the event Fτ , if Hs ≥ 1
2 + γ, then the CODδ algorithm with any δ ∈ (12 −

γ
4 ,

1
2 )

returns Λs ≤ 8Dτ/∆.
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A proof of the above result is provided at the end of this section. We pick

γ = γ0, τ =
γ0

1 + 2γ0
, Dτ = σG−1

(
exp

{
−1+ 2/α

τ

})
, Fτ = Enorm

τ .

In view of Lemma 19 note that the event Fτ has probability at least 1−e−0.3n and satisfies
the requirement in Proposition 21. This implies that we get the required bound on Λs+1.

Combining the proof of part (i) we conclude that both the claims hold with probability at
least 1− 8ke−

nα

4 .

PROOF OF PROPOSITION 21. We prove this using a contradiction. Fix τ = γ
1+2γ as spec-

ified. Our entire analysis will be on the event Fτ . Let us assume Λs > 8Dτ/∆. This implies
that there exists a cluster h such that the centroid estimation error satisfies

‖θ̂(s)h − θh‖> 8Dτ .

As Hs ≥ 1
2 + γ, we know that n(s)hh ≥

(
1
2 + γ

)
n∗h. As we are on the set Fτ and

S = T
(s)
h ∩ T ∗

h , |S|= n
(s)
hh ≥

(
1

2
+ γ

)
n∗h ≥

(
1

2
+ γ

)
nα

we get
∣∣{j ∈ S : ‖wj‖2 ≤Dτ

}∣∣ ≥ (1 − τ)|S|. In view of n(s)hh ≥
(
1
2 + γ

)
n
(s)
h from Hs ≥

1
2 + γ the above implies

∣∣{j ∈ S : ‖wj‖2 ≤Dτ

}∣∣≥ 1 + γ

1 + 2γ
|S| ≥

(
1 + γ

1 + 2γ

)(
1

2
+ γ

)
n
(s)
h ≥

(
1

2
+
γ

2

)
n
(s)
h .

This gives us
∣∣∣
{
j ∈ T (s)

h : ‖Yj − θh‖ ≤Dτ

}∣∣∣≥
(
1

2
+
γ

2

)
n
(s)
h(36)

Next we will show
∣∣∣
{
j ∈ T (s)

h : ‖Yj − θ̂
(s)
h ‖ ≤ 4Dτ

}∣∣∣≥ (1− δ)n
(s)
h ≥

(
1

2
+
γ

4

)
n
(s)
h .(37)

To prove the above, first set W =
{
j ∈ T (s)

h : ‖Yj − θh‖ ≤Dτ

}
. Then given any j0 ∈W , all

the points in {Yj : j ∈W} are within 2Dτ distance of Yj0 . This implies
∣∣∣
{
j ∈ T (s)

h : ‖Yj − Yj0‖ ≤ 2Dτ

}∣∣∣≥
(
1

2
+
γ

2

)
n
(s)
h .(38)

Now, remember the computation of TMδ(
{
Yj : j ∈ T (s)

h

}
) in Algorithm 2 according to Al-

gorithm 1. In view of (38) we then have Ri∗ ≤ 2Dτ and hence for δ = 1
2 −

γ
4

∣∣∣
{
j ∈ T (s)

h : ‖Yj − Yi∗‖ ≤ 2Dτ

}∣∣∣≥
∣∣∣
{
j ∈ T (s)

h : ‖Yj − Yi∗‖ ≤Ri∗
}∣∣∣≥

(
1

2
+
γ

4

)
n
(s)
h .

Then, the steps in Algorithm 1 implies for some V ⊂ T
(s)
h with |V |=

(
1
2 +

γ
4

)
n
(s)
h

‖θ̂(s)h − Yj‖ ≤ ‖θ̂(s)h − Yi∗‖+ ‖Yj − Yi∗‖ ≤
∑

j∈V ‖Yj − Yi∗‖⌊
(1− δ)n

(s)
h

⌋
+1

+Ri∗ ≤ 2Ri∗ ≤ 4Dτ , j ∈ V.

This completes the proof of (37).
Finally, combining (36) and (37) we get a contradiction as
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•
∣∣∣
{
j ∈ T (s)

h : ‖Yj − θ̂
(s)
h ‖ ≤ 4Dτ

}
∪
{
j ∈ T (s)

h : ‖Yj − θh‖ ≤Dτ

}∣∣∣≤
∣∣∣{j ∈ T (s)

h }
∣∣∣= n

(s)
h

•
∣∣∣
{
j ∈ T (s)

h : ‖Yj − θ̂
(s)
h ‖ ≤ 4Dτ

}
∩
{
j ∈ T (s)

h : ‖Yj − θh‖ ≤Dτ

}∣∣∣= 0

•
∣∣∣
{
j ∈ T (s)

h : ‖Yj − θ̂
(s)
h ‖ ≤ 4Dτ

}∣∣∣+
∣∣∣
{
j ∈ T (s)

h : ‖Yj − θh‖ ≤Dτ

}∣∣∣≥
(
1 + 3γ

4

)
n
(s)
h .

A.2. Proof of Theorem 1. In view of the above results we provide the proof of Theo-
rem 1 below. For an ease of notations denote

As =
1

n

n∑

i=1

1{z(s)i 6=zi} =
1

n

∑

h 6=g∈[k]

n
(s)
hg .(39)

For c1 > 0 to be chosen later, we define

ǫ0 =

√
G−1(e−c1/α)

∆/σ
, γ0 = γ.

Then from Lemma 20 it follows that we can choose c1, c2 > 0 such that if

∆≥ c2σG
−1

(
exp

{
−1 + 2/α

τ

})
, τ =

γ0
1 + 2γ0

,

then on the set Eǫ0,γ0 , for a large enough c1, we have

• if Λ0 ≤ 1
2 − ǫ0 then H1 ≥ 0.8,

• if H0 ≥ 1
2 + γ0 then Λ0 ≤ 0.2

A second application of Lemma 20 with ǫ1 = 0.3, γ1 = 0.3 guarantees that if ∆ ≥
G−1

(
exp

{
− c3
α

})
for a large enough c3, then on the set Eǫ1,γ1 we have for all s≥ 1,

(P1) If Λs ≤ 1
2 − ǫ1 then Hs+1 ≥ 1− 5

2α log(1/G(ǫ20∆/σ))
≥ 0.8,

(P2) If Hs ≥ 1
2 + γ1 then Λs ≤ 8σ

∆G
−1
(
exp

{
− (1+2/α)(1+2γ1)

γ1

})
≤ G−1(e−c4/α)

SNR
≤ 0.2,

where c4 is an absolute constant. Note that from Lemma 20 the probabilities of each of the
sets Eǫ0,γ0 ,Eǫ1,γ1 are at least 1− 2k

nα

4 − e−0.3n, and hence

E = Eǫ0,γ0 ∩ Eǫ1,γ1 with P [E ]≥ 1− 8ke−
nα

4 .(40)

In view of the above arguments, on the set E we have

Λs ≤
G−1(e−c4/α)

SNR
≤ 0.2, Hs ≥ 0.8 for all s≥ 1.(41)

Next we will show that P
[
zi 6= ẑ

(s+1)
i

∣∣∣E
]

is small for each i ∈ [n], and then sum over i to

achieve the required result. Fix a choice for zi, say equal to g ∈ [k]. Remember (32)

1{zi=g,ẑ(s+1)
i =h} ≤ 1{

(1−2Λs)2

2(1+2Λs)
‖θg−θh‖≤‖wi‖

}.(42)

Then in view of the inequalities

• (1− x)2 ≥ 1− 2x, (1 + x)−1 ≥ 1− x with x= 2Λs < 1
• (1− 2x)(1− x)≥ 1− 3x with the above choices of x,
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and ‖θg − θh‖ ≥∆ we continue the last display to get

1{zi=g,ẑ(s+1)
i =h} ≤ 1{ 1

2
(1−6Λs)∆≤‖wi‖} ≤ 1{σ(SNR−6G−1(e−c4/α))≤‖wi‖},

where the last inequality followed using the bound on Λs ≤ G−1(e−c4/α)
SNR

in (41). Taking ex-
pectation conditioned on the event E in (40) and using the inequality

1{zi 6=ẑ(s+1)
i } ≤

∑

g,h∈[k]

g 6=h

1{ẑ(s+1)
i =h,zi=g}

we get

P

[
zi 6= ẑ

(s+1)
i

∣∣∣E
]
≤ k2 max

g,h∈[k]

g 6=h

P

[
zi = g, ẑ

(s+1)
i = h

∣∣∣E
]
≤ k2G

(
SNR− 6G−1(e−c4/α)

)

This implies

E [As+1|E ] =
1

n

n∑

i=1

P

[
zi 6= z

(s+1)
i

∣∣∣E
]
≤ k2G

(
SNR− 6G−1(e−c4/α)

)
.

Combining the above with (40) we get

E [As+1]≤ 8ke−
nα

4 + k2G
(
SNR− 6G−1(e−c4/α)

)
.

APPENDIX B: PROOF OF RESULTS WITH OUTLIER (THEOREM 2)

B.1. Preparation. The following lemma provides results that show a lower bound on
Hs+1 based on Λs and establish upper bound on Λs in terms of Hs, when nα(1−ψ) outliers
are present.

LEMMA 22. Fix any ǫ0 ∈ (0, 12 ), γ0 ∈ ( 10
nα ,

1
2). Then whenever ∆, σ > 0 satisfies

5
2α log(1/G(ǫ20∆/σ))

< 1
2 the following holds true. There is an event Eγ0,ǫ0 , which has a prob-

ability at least 1 − 4ke−
nα

4 , on which we have for all s ≥ 0, the CODδ algorithm with

δ ∈ (12 −
γ0
4 ,

1
2) ensures:

(i) if Λs ≤ 1
2 − ǫ0 then Hs+1 ≥ 1

2 +
ψ−2ξ
2(2−ψ) where ξ = 5

4α log(1/G(ǫ20∆/σ))
,

(ii) if Hs+1 ≥ 1
2 + γ0 then Λs+1 ≤ 8σ

∆G
−1
(
exp

{
−1+2/α

τ

})
, where τ = γ0

1+2γ0
.

PROOF OF LEMMA 22. Repeating the argument in (32) in the proof of Lemma 20 we
have

1{zi=g,ẑ(s+1)
i =h} ≤ 1{ǫ20∆/σ≤‖wi‖}.

Summing 1{zi=g,ẑ(s+1)
i =h} over

{
i ∈ T ∗

g

}
, in view of Lemma 13, we get on the set Econ

ǫ0

n
(s+1)
gh ≤

∑

i∈T ∗
g

1{ǫ20∆≤‖wi‖} ≤
5n∗g

4 log(1/G(ǫ20∆/σ))
, ∀h∈ [k], h 6= g.(43)

Using the last display and noting that k ≤ 1
α and n∗g ≥ nα we get

∑
h∈[k]

h6=g

n
(s+1)
gh

n∗g
≤ 5k

4 log(1/G(ǫ20∆/σ))
≤ 5

4α log(1/G(ǫ20∆/σ))
.(44)
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Next we switch g,h in (43) and sum over h ∈ [k], h 6= g. We get with probability similar to
P
[
Econ
ǫ0

]

∑

h∈[k]

h6=g

n
(s+1)
hg ≤

5
∑

h∈[k],h 6=g n
∗
h

4 log(1/G(ǫ20∆/σ))
≤ 5n

4 log(1/G(ǫ20∆/σ))
.

We define ξ = 5
4α log(1/G(ǫ20∆/σ))

. In view of (44) this implies

n(s+1)
gg = n∗g −

∑

h∈[k]

h6=g

n
(s+1)
gh ≥ n∗g − nαξ ≥ n∗g(1− ξ).(45)

Using the above and noticing that in addition to the points in ∪h∈[k]
{
T ∗
h ∩ T (s+1)

g

}
, T (s+1)

g

can at most have nα(1−ψ) many extra points, accounting for the outliers, we get

n
(s+1)
gg

n
(s+1)
g

≥ n
(s+1)
gg

n
(s+1)
gg + nαξ + nα(1−ψ)

≥ 1

1 +
n∗
g(1−ψ+ξ)

n(s+1)
gg

≥ 1

1 + 1−ψ+ξ
1−ξ

=
1

2
+

ψ− 2ξ

2(2− ψ)
.

Combining the last display with (45) we get

Hs+1 = min
g∈[k]

{
min

{
n
(s)
gg

n∗g
,
n
(s)
gg

n
(s)
g

}}
≥ 1

2
+min

{
ψ− 2ξ

2(2−ψ)
,
1

2
− ξ

}
.

As ψ < 1, we get ψ−2ξ
2(2−ψ) ≤

ψ
2 − ξ ≤ 1

2 − ξ. This finishes the proof.
The proof of Lemma 22(ii) is similar to the proof of Lemma 20(ii).

B.2. Proof of Theorem 2. For c1 > 0 to be chosen later, we define

ǫ0 =

√√√√G−1
(
e−

c1
αψ

)

∆/σ
, γ0 = γ.

Then from Lemma 22 it follows that we can choose c2 > 0 such that if

∆≥ c2σmax

{
G−1

(
exp

{
−1 + 2/α

τ

})
,G−1

(
e−

c1
αψ

)}
, τ =

γ0
1 + 2γ0

,

then on the set Eǫ0,γ0 , as δ = 1
2 −min

{γ0
4 , δ/24

}
, we have that the CODδ algorithm guaran-

tees

• if Λ0 ≤ 1
2 − ǫ0 then H1 ≥ 1

2 +
ψ
6 .

• if H0 ≥ 1
2 + γ0 then Λ0 ≤ 0.3,

A second application of Lemma 22, with ǫ1 = 0.2, γ1 =
ψ
6 and the above lower bound on ∆

for large enough c1, c2, implies that the CODδ algorithm guarantees on the event Eǫ1,γ1 for
all s≥ 1,

(P1) If Λs ≤ 1
2 − ǫ1 then Hs+1 ≥ 1

2 +
ψ
6 ,

(P2) If Hs ≥ 1
2 + γ1 then Λs ≤ 8σ

∆G
−1
(
exp

{
− (1+2/α)(1+2γ1)

γ1

})
≤ G−1(e−c4/(αψ))

SNR
≤ 0.2,

where c4 is an absolute constant. Combining the above displays we get that on the set

E = Eǫ0,γ0 ∩ Eǫ1,γ1 with P [E ]≥ 1− 8ke−
nα

4(46)
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we have

Λs ≤
G−1(e−c4/(αψ))

SNR
≤ 0.2, Hs ≥

1

2
+
ψ

6
for all s≥ 2.(47)

Now it is sufficient to show that P
[
zi 6= ẑ

(s+1)
i

∣∣∣E
]

is small for each i ∈ [n]. This will imply

that on the set E , ℓ(ẑ(s+1), z) = 1
n

∑n
i=1 1{zi 6=ẑ(s+1)

i } is also small in probability. From this,

using a Markov inequality we will conclude the result. From this point onward the proof is

again similar to the proof in Theorem 1 for showing that P
[
zi 6= ẑ

(s+1)
i

∣∣∣E
]

is small. The

only difference is that we replace the term G−1(e−c4/α) by G−1(e−c4/(αψ)). This finishes
the proof.

APPENDIX C: PROOF OF MISLABELING LOWER BOUND (THEOREM 3)

We will consider a smaller set of labels to perform the analysis. Define

Z∗ = z̄ × {1,2}n−m ⊆ [k]n,

m= k⌈nα/k⌉, z̄ ∈ [k]m, z̄i = u,u ∈ {1, . . . , k}, i ∈ (u− 1)
m

k
+1, . . . , u

m

k
.

(48)

In other words, for each z ∈ Z∗, we already know the labels corresponding to the first
k⌈nα/k⌉ entries. For the rest of the entries the labels can either be 1 or 2. Note that for
each label vector z ∈ Z∗ we have |{i : zi = g}| ≥ ⌈nα/k⌉ for each g = 1, . . . , n. With this
parameter (label) set Z∗ we will apply Assouad’s Lemma (Yu, 1997):

LEMMA 23 (Assouad). Let r ≥ 1 be an integer and let Fr = {Qz : z ∈ Z} contains 2r

probability measures. Write v ∼ v′ if v and v′ differ in only one coordinate, and write v ∼j v
′

when the coordinate is the j-th. Suppose that there are m pseudo-distances on D such that

for any x, y ∈D

d(x, y) =

r∑

j=1

dj(x, y),

and further assume that, if v ∼j v
′ then dj(f(Qz), f(Q′

z))≥ δ. Then

max
Qz∈Fr

Ez

[
d(f̂ , f(Qz))

]
≥ r · δ

2
·min{1−TV(Qz,Qz′) : z ∼ z′}.

To apply the above lemma, define the data distribution Qz given any label vector z ∈ Z∗

z ∈ Z∗, Qzi = Distribution of θzi +wi, i= 1, . . . , n.

Q=Qz̄1 × · · · ×Qz̄m , Qz = Q̄ ×Qzm+1
× · · · ×Qzn .

In view of the above definition, to apply Lemma 23, we choose

Z =Z∗, r = n−m, f(Qz) = z, dj(z, z
′) = 1{zn−m+j 6=z′n−m+j}, δ = 1.

Hence, using Lemma 23 we get that given any estimator ẑ (which we can choose to be in Z∗)
it satisfies

max
Qz∈Fr

Ez

[
n∑

i=1

1{ẑi 6=z}

]
≥ n−m

2
min{1−TV(Qz ,Qz′) : z ∼ z′ ∈ Z∗}

=
n−m

2
(1−TV(P1, P2)),(49)
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We further specify the error distributions corresponding to the labels {zm+1, . . . , zn} based
on the decay function G. As G is already differentiable on (σcG,∞) we can extend G on
(0, σcG] such that it is differentiable throughout with G(0) = 1,G′(0) = 0. Then 1−G(·) is
a distribution function with a density −G′. We define

{wi}ni=m+1
iid∼ R · V,

P [R≥ x] = 1−G(x/σ), P

[
V =

θ1 − θ2
‖θ1 − θ2‖

]
=

1

2
= P

[
V =

θ2 − θ1
‖θ1 − θ2‖

]
.

(50)

In view of the above we can simplify (49) as

max
Qz∈Fr

Ez

[
n∑

i=1

1{ẑi 6=z}

]
=
n−m

2
(1−TV(P1, P2)),(51)

where Pi denotes the distribution of θi + R · V for i = 1,2. To analyze the total variation
term in the above formula, we first note that without a loss of generality we can assume that
θ1, θ2 lie on the real line with θ1 =−∆

2 , θ2 =
∆
2 . This is because the total variation distance

is invariant under location shift and rotational transformation. Then the distributions in (50)
can be simplified to in terms of the density of wi-s given by

fwi(x) =− 1

2σ
G′(|x|/σ), i=m+1, . . . , n.

Hence, using a location shift argument, we get the densities of P1, P2 on (−∞,∞)

dP1(y) =− 1

2σ
G′

( |y +∆/2|
σ

)
dy, dP2(y) =− 1

2σ
G′

( |y−∆/2|
σ

)
dy.(52)

Then the total variation distance between P1, P2 can be bounded as

TV(P1, P2) =
1

2

∫ ∞

−∞
|dP1(y)− dP2(y)|

=
1

4σ

∫ ∞

−∞

∣∣∣∣∣G
′

(∣∣y + ∆
2

∣∣
σ

)
−G′

(∣∣y− ∆
2

∣∣
σ

)∣∣∣∣∣dy

(a)
=

1

2σ

∫ 0

−∞

∣∣∣∣∣G
′

(∣∣y+ ∆
2

∣∣
σ

)
−G′

(∣∣y − ∆
2

∣∣
σ

)∣∣∣∣∣dy

=
1

2σ

(∫ −∆

2
−σcG

−∞
+

∫ −∆

2
+σcG

−∆

2
−σcG

+

∫ 0

−∆

2
+σcG

)∣∣∣∣∣−G
′

(∣∣y+ ∆
2

∣∣
σ

)
−
(
−G′

(∣∣y − ∆
2

∣∣
σ

))∣∣∣∣∣dy

(b)

≤ − 1

2σ

(∫ −∆

2
−σcG

−∞
+

∫ 0

−∆

2
+σcG

)
G′

(∣∣y + ∆
2

∣∣
σ

)
dy

− 1

2σ

∫ −∆

2
+σcG

−∆

2
−σcG

(
G′

(∣∣y + ∆
2

∣∣
σ

)
+G′

(∣∣y− ∆
2

∣∣
σ

))
dy

where cG > 0 is as prescribed in (Q) and

• (a) followed as

∣∣∣∣G′

(
|y+∆

2 |
σ

)
−G′

(
|y−∆

2 |
σ

)∣∣∣∣, as a function of y, is symmetric about 0

• (b) followed as G′(y) is negative for all y > 0 and we allow ∆≥ 2σcG implies

−G′

(∣∣y+ ∆
2

∣∣
σ

)
≥−G′

(∣∣y − ∆
2

∣∣
σ

)
≥ 0, y ∈ (−∞,−∆

2
− σcG)∪ (−∆

2
+ σcG,0).
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We continue the last inequality on TV(P1, P2) to get

TV(P1, P2)≤−
∫ 0

−∞

1

2σ
G′

(∣∣y+ ∆
2

∣∣
σ

)
dy −

∫ −∆

2
+σcG

−∆

2
−σcG

1

2σ
G′

(∣∣y − ∆
2

∣∣
σ

)
dy

(a)
= 1+

∫ ∞

0

1

2σ
G′

(
y + ∆

2

σ

)
dy −

∫ −∆

2
+σcG

−∆

2
−σcG

1

2σ
G′

(
−
(
y− ∆

2

)

σ

)
dy

(b)
= 1+

∫ ∞

∆/2

1

2σ
G′
( z
σ

)
dz −

∫ ∆+σcG

∆−σcG

1

2σ
G′
( z
σ

)
dz

(c)

≤ 1 +

∫ ∞

∆/2

1

2σ
G′
( z
σ

)
dz −

∫ ∆/2+2σcG

∆/2

1

2σ
G′
( z
σ

)
dz = 1− 1

2
G

(
∆

2σ
+ 2cG

)
,

where

• (a) followed as − 1
2σG

′

(
|y+∆

2 |
σ

)
is a density on (−∞,∞) from (52)

• (b) followed by change of variables
• (c) followed as −G′(y) = |G′(y)| is decreasing over (cG,∞) and ∆≥ 2σcG.

Plugging the last display in (51) completes the proof.

APPENDIX D: TECHNICAL RESULTS

PROOF OF LEMMA 19. It suffices to show that for any set S ⊆ [n]

P

[
∑

i∈S

1{‖wi‖2
>σG−1(exp{− 1+1/β

τ })} ≥ τ |S|
]
≤ e−n,

and then use the union bound over different choices of S to get the result. We define

Vi = 1{‖wi‖2>σG
−1(exp{− 1+1/β

τ })}.

In view of the above definitions it is enough to show that

P

[
∑

i∈S

Vi ≥ τ |S|
]
≤ e−n for all S ⊆ [n].(53)

Note that

P

[
‖wi‖2 > σG−1

(
exp

{
−1 + 1/β

τ

})]
≤ exp

{
−1 + 1/β

τ

}
≤ τ

1 + 1/β
< τ.(54)

This implies
∑

i∈S Vi is stochastically smaller than Binom(|S|, exp
{
−1+1/β

τ

}
). We con-

tinue to analyze (53) using the Chernoff’s inequality for the Binomial random variable:

LEMMA 24. (Boucheron, Lugosi and Massart, 2013, Section 2.2) For a Binom(m,q)
random variable we have

P [Binom(m,q)≥ma]≤ exp (−mhq(a)) ; q < a < 1, hq(a) = a log
a

q
+ (1− a) log

1− a

1− q
.

We use the above result for the Binom(|S|, exp
{
−1+1/β

τ

}
) distribution. Using q =

exp
{
−1+1/β

τ

}
, a = τ , m = |S| in the above lemma and x logx ≥ −0.5 for x ∈ (0,1) we
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get

P

[
∑

i∈S

Vi ≥ τ |S|
]
≤ P

[
Binom(|S|, exp

{
−1 + 1/β

τ

}
)≥ τ |S|

]
(55)

≤ exp

(
−m

(
τ log

τ

q
+ (1− τ) log

1− τ

1− q

))

≤ exp (−m{(1 + 1/β) + τ log τ + (1− τ) log(1− τ)})≤ e−n.(56)

Finally taking an union bound over all choices of S we get the desired bound.

APPENDIX E: PROOF OF INITIALIZATION RESULTS (THEOREM 6 AND
THEOREM 9)

E.1. Continuing the proof of Theorem 6 from Section 7.2: Lemma 17 and Lemma 18.

PROOF OF LEMMA 17. In view of Lemma 15, without a loss of generality we assume
that θ1 is the closest centroid to µ(1)1 and (29). We first prove the following claims:

∣∣∣P(ℓ)
1 ∩ {Yi : i ∈ T ∗

1 }
∣∣∣≥ n∗1 −m− 5n

4 log(1/(G(∆/32σ)))
(57)

∣∣∣P(ℓ)
1 ∩ {Yi : i ∈ T ∗

2 }
∣∣∣≤ nβ +

5n

4 log(1/(G(∆/32σ)))
.(58)

The first claim (57) follows from the following sequence of arguments

• Note that µ(ℓ)1 = µ
(ℓ+1)
1 from the description in Algorithm 4. This implies dist

(ℓ+1)
1 ={

D(µ
(ℓ)
1 ,P(ℓ+1)

1 )
}{1−β}

> ∆
16 . As P(ℓ+1)

1 is constructed by including the data points ac-

cording to increasing Euclidean distance from µ
(ℓ)
1 = µ

(ℓ+1)
1 we get

P(ℓ+1)
1 ⊇ {Yi : i ∈ [n]} ∩ B

(
µ
(ℓ)
1 ,

∆

16

)
.(59)

As we have P(ℓ)
1 ⊂ P(ℓ+1)

1 and |P(ℓ)
1 | ≤ |P(ℓ+1)

1 | = |P(ℓ)
1 |+m, we get that there is a set

A⊆ {Yi : i ∈ [n]} that satisfies

P(ℓ)
1 ⊇P(ℓ+1)

1 /A, |A| ≤m≤ nα2

16
.

In view of (59) the last display implies

P(ℓ)
1 ∩ {Yi : i ∈ T ∗

1 } ⊇ P(ℓ+1)
1 ∩ {Yi : i ∈ T ∗

1 }/A⊇B
(
µ
(ℓ)
1 ,

∆

16

)
∩ {Yi : i ∈ T ∗

1 }/A,

and hence
∣∣∣P(ℓ)

1 ∩ {Yi : i ∈ T ∗
1 }
∣∣∣≥
∣∣∣∣B
(
µ
(ℓ)
1 ,

∆

16

)
∩ {Yi : i ∈ T ∗

1 }
∣∣∣∣− |A|

≥
∣∣∣∣B
(
µ
(ℓ)
1 ,

∆

16

)
∩ {Yi : i ∈ T ∗

1 }
∣∣∣∣−m.(60)

• As we have from (29), with ∆≥ 96c1:

B
(
µ
(ℓ)
1 ,

∆

16

)
⊇B

(
θ1,

∆

16
− 3c1

)
⊇B

(
θ1,

∆

32

)
,(61)
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in view of Lemma 14(ii) we get
∣∣∣∣B
(
µ
(ℓ)
1 ,

∆

16

)
∩ {Yi : i ∈ T ∗

1 }
∣∣∣∣≥
∣∣∣∣B
(
θ1,

∆

32

)
∩ {Yi : i ∈ T ∗

1 }
∣∣∣∣

≥ n∗1

(
1− 5

4 log
(
1/G

(
∆
32σ

))
)

≥ n∗1 −
5n

4 log(1/(G(∆/32σ)))
.(62)

Combining (60) and (62) we get (57). Next, to prove the claim (58), we note that:

• In view of Lemma 14 there are at most 5n
4 log(1/(G(∆/32σ))) many points from {Yi : i ∈ T ∗

2 }
outside B(θ2, ∆32). As (29) implies B

(
µ
(ℓ)
1 , ∆16

)
⊆ B

(
θ1,

∆
16 +3c1

)
, and, B

(
θ1,

∆
16 +3c1

)

and B(θ2, ∆32 ) are disjoint, we have

∣∣∣∣P
(ℓ)
1 ∩ {Yi : i ∈ T ∗

2 } ∩ B
(
µ
(ℓ)
1 ,

∆

16

)∣∣∣∣≤
∣∣∣∣{Yi : i ∈ T

∗
2 }/B

(
θ2,

∆

32

)∣∣∣∣≤
5n

4 log(1/(G(∆/32σ)))
.

(63)

• On the other hand, dist(ℓ)1 =
{
D(µ

(ℓ)
1 ,P(ℓ)

1 )
}{1−β}

≤ ∆
16 implies that

∣∣∣∣P
(ℓ)
1 ∩ {Yi : i ∈ T ∗

2 }/B
(
µ
(ℓ)
1 ,

∆

16

)∣∣∣∣≤ nβ.(64)

Combining (63) and (64) we get (58).
Hence, we have proven the inequalities (57) and (58). These inequalities together imply

∣∣∣∣P
(ℓ)
1 ∩ {Yi : i ∈ T ∗

2 }
∣∣∣∣≥ n∗2 − nβ − 5n

4 log(1/(G(∆/32σ)))
(65)

∣∣∣∣P
(ℓ)
1 ∩ {Yi : i ∈ T ∗

1 }
∣∣∣∣≤m+

5n

4 log(1/(G(∆/32σ)))
.(66)

In view of |{Yi : i ∈ T ∗
2 }/B(θ2,∆/32)| ≤ 5n

4 log(1/(G(∆/32σ))) from Lemma 14, we have
∣∣∣∣P

(ℓ)
1 /B(θ2,∆/32)

∣∣∣∣

≤
∣∣∣∣
{
P(ℓ)
1 ∩ {Yi : i ∈ T ∗

2 }/B(θ2,∆/32)
}
∪
{
P(ℓ)
1 ∩ {Yi : i ∈ T ∗

1 }/B(θ2,∆/32)
}∣∣∣∣+ nout

≤ |{Yi : i ∈ T ∗
2 }/{B(θ2,∆/32)}|+

∣∣∣∣P
(ℓ)
1 ∩ {Yi : i ∈ T ∗

1 }
∣∣∣∣+ nout

≤ 5n

4 log(1/(G(∆/32σ)))
+m+

5n

4 log(1/(G(∆/32σ)))
+
nα2

32

≤ 3nα2

32
+

5n

2 log(1/(G(∆/32σ)))
≤ 5nα2

32
,

(67)

where the last inequality followed from 5n
2 log(1/(G(∆/32σ))) ≤

nα2

16 as ∆ ≥ 32σG−1(e−
40

α2 ).
Then we make the following observations.

• As

∣∣∣∣P
(ℓ)
1

∣∣∣∣≥ nα−nβ− nα
16 ≥ 11nα

16 from (65), any subset of P(ℓ)
1 with size (1− β) |P(ℓ)

1 |,

discards a set of size at least 11nαβ
16 ≥ nα2

6 (note that β = α
4 ).
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• From (67) we get

∣∣∣∣P
(ℓ)
1 /B(θ2,∆/32)

∣∣∣∣ ≤ nα2

6.4 . In view of the last argument this implies

that the set P(ℓ)
1 ∩ B(θ2,∆/32), which has a diameter at most ∆

16 , contains more points

than any subset of P(ℓ)
1 with size (1− β) |P(ℓ)

1 |.
• Hence, the diameter of the tightest subset of P(ℓ)

1 with size (1− β) |P(ℓ)
1 | is at most ∆

16 .

This implies dist(ℓ)2 ≤∆/16 and concludes our proof.

PROOF OF LEMMA 18. As totdistℓ ≤ ∆
8 , we have dist

(ℓ)
i ≤ ∆

8 for i ∈ {1,2}. First we

show that both µ(ℓ)1 and µ(ℓ)2 lie in ∪i=1,2B(θi,∆/3). If not, without a loss of generality let

µ
(ℓ)
2 lie outside ∪i=1,2B(θi,∆/3). Then we have

B
(
µ
(ℓ)
2 ,

∆

8

)
∩
{
∪i∈{1,2}B

(
θi,

∆

8

)}
= φ, .(68)

As we have dist
(ℓ)
2 ≤ ∆

8 , we get that
∣∣∣∣P

(ℓ)
1 ∩B

(
µ
(ℓ)
2 ,

∆

8

)∣∣∣∣≥ (1− β)

∣∣∣∣P
(ℓ)
1

∣∣∣∣ .(69)

Using Lemma 14 we get that
∣∣∣∣{Yi : i ∈ [n]}/

{
∪i∈{1,2}B

(
θi,

∆

8

)}∣∣∣∣≤
5n

4 log(1/(G(∆/32σ)))
+ nout.(70)

In view of the last display, using (68) and(69) we get
∣∣∣∣P

(ℓ)
1

∣∣∣∣≤
1

1− β

∣∣∣∣P
(ℓ)
1 ∩B

(
µ
(ℓ)
2 ,

∆

8

)∣∣∣∣

≤ 1

1− β

∣∣∣∣{Yi : i ∈ [n]}/
{
∪i∈{1,2}B

(
θi,

∆

8

)}∣∣∣∣≤
5n

2 log(1/(G(∆/32σ)))
+ 2nout.

The last display implies
∣∣∣P(ℓ)

1

∣∣∣≥ n− 5n

2 log(1/(G(∆/32σ)))
− 2nout ≥ n− nα2

8
,(71)

where the last inequality followed using nout ≤ nα2

32 , provided

5n

2 log(1/(G(∆/32σ)))
≤ nα2

16
, i.e., ∆≥ 32σG−1

(
e−

40

α2

)
.

In view of (70) with ∩i∈{1,2}B
(
θi,

∆
8

)
= φ, nout ≤ nα2

32 and n∗1, n
∗
2 ≥ nα, we get that given

any set S ⊆ {Yi : i ∈ [n]} of size at least n− nα
2 , there will be at least two points in S that are

at least ∆− ∆
4 distance away. Choose S = {i ∈ [n] : Yi ∈ B(µ(ℓ)1 ,dist

(ℓ)
1 )}. Using (71) we get

|S| ≥ (1− β)
∣∣∣P(ℓ)

1

∣∣∣≥ n(1− α/4)(1−α2/8)≥ n− nα

2
,

Suppose x, y are the farthest away points in S . This leads to a contradiction as

∆− ∆

4
≤ ‖x− y‖ ≤ ‖x− µ

(ℓ)
1 ‖+ ‖y − µ

(ℓ)
1 ‖ ≤ 2 · dist(ℓ)1 ≤ ∆

4
.
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Now it remains to show that µ(ℓ)1 , µ
(ℓ)
2 lie in different balls among B(θ1,∆/3) and

B(θ2,∆/3). If not, then suppose that both lie in B(θ1,∆/3). Note that either P(ℓ)
1 or P(ℓ)

1
will contain more than half the points from {Yi : i ∈ T ∗

2 } ∩ B
(
θ2,

∆
8

)
. We deal with the case

where P(ℓ)
1 is the partition with more than half of the points in {Yi : i ∈ T ∗

2 }∩B
(
θ2,

∆
8

)
. The

case with P(ℓ)
1 can be worked out similarly. Then we have the following

• As dist(ℓ)2 ≤ ∆
8 and µ(ℓ)2 ∈ B(θ1,∆/3) we get

B
(
µ
(ℓ)
2 ,dist

(ℓ)
2

)
⊆B

(
µ
(ℓ)
2 ,

∆

8

)
⊆B

(
θ1,

∆

3
+

∆

8

)
= B

(
θ1,

11∆

24

)

• In view of the last argument we have

B
(
θ2,

∆

8

)
∩B

(
µ
(ℓ)
2 ,dist

(ℓ)
2

)
⊆B

(
θ2,

∆

8

)
∩ B

(
θ1,

11∆

24

)
= φ,(72)

• From Lemma 14, whenever 5n
8 log(1/(G(∆/32σ))) ≤ nα

6 , i.e., ∆≥ 32σG−1
(
e−

3

4α

)
, we get

1

2

∣∣∣∣{Yi : i ∈ T
∗
2 } ∩ B

(
θ2,

∆

8

)∣∣∣∣≥
nα

2
− 5n

8 log(1/(G(∆/32σ)))
≥ nα

3
.(73)

However, this leads to a contradiction, as in view of (72) we have
∣∣∣∣P

(ℓ)
1 ∩ B

(
θ2,

∆

8

)∣∣∣∣≤
∣∣∣∣P

(ℓ)
1 /

{
Yi : i ∈ [n]Yi ∈ B

(
µ
(ℓ)
2 ,dist

(ℓ)
2

)}∣∣∣∣≤ nβ ≤ nα

4
,

but on the other hand, using the fact that P(ℓ)
1 contains more than half of the points in {Yi :

i ∈ T ∗
2 } ∩ B

(
θ2,

∆
8

)
, we get from (73)

∣∣∣∣P
(ℓ)
1 ∩B

(
θ2,

∆

8

)∣∣∣∣≥
1

2

∣∣∣∣{Yi : i ∈ T
∗
2 } ∩ B

(
θ2,

∆

8

)∣∣∣∣≥
nα

3
.

E.2. Proof of Theorem 9. We will use the following high probability guarantee for
proving our initialization result. The proof is identical to that of Lemma 14 and is omitted.

LEMMA 25. The following statements hold for the β in Theorem 9. There is an event Ẽk
with P

[
Ẽk
]
≥ 1− 2ke−

ming∈[k] n
∗
g

4 on which the following holds for the k-cluster problem:

(i)
∣∣∣B(θi, σG−1(e−

5

4β2 )) ∩ {Yi : i ∈ T ∗
i }
∣∣∣≥ n∗i (1− β2) for each i ∈ [k],

(ii)
∣∣B(θi, ∆

16k )∩ {Yi : i ∈ T ∗
i }
∣∣≥ n∗i

(
1− 5

4 log(1/G(∆/(16σk)))

)
for each i ∈ [k].

In the proof below, we assume that all the mentioned constants depend onG,α,σ, k, unless
otherwise specified. In addition, for our entire analysis we will assume that the event Ẽk
mentioned in Lemma 25 holds, which has a high probability. In view of our notations we
also have nout ≤ nαβ

16k . Similar to before, we will extensively use the following definition of
order statistics: Given any set V of real numbers and fraction 0< p < 1, let V {p} define the
⌈p|V |⌉-th smallest number in V . We make the following observations for simplifying the
notation. Whenever we call the IOD algorithm to find j centroids from the remaining data
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set, it contains a for-loop with the loop counter denoted by ℓj . As a result, whenever we find
a set of centroids µ̂k, . . . , µ̂2, µ̂2 it corresponds to a set of loop counts ℓ̃k, . . . , ℓ̃2

(µ̂k, . . . , µ̂2, µ̂1) = (µ
(k,ℓ̃k)
k , . . . , µ

(2,ℓ̃2)
2 , µ

(1,ℓ̃2)
1 ),

and vice-versa. In view of this relation, in the proofs below we will interchangeably use the
centroids and the indices.

The proof is a combination of the following results.

LEMMA 26. There is one θi, such that ‖θi − µ
(k,1)
k ‖ ≤ 3σG−1

(
e−

5

4β2

)
.

LEMMA 27. There is a stage ℓ̄k+1, with ℓ̄k ≥ 1, such that dist
(ℓ̄k+1)
k > ∆

8k ,dist
(ℓ̄k)
k ≤ ∆

8k .

LEMMA 28. There exists steps ℓk, . . . , ℓ2 such that for each i= 2, . . . , k, at the ℓi-th step

the distance to the (1− β)|P(ℓi)
i |-th closest point from µ

(i,ℓi)
i , within the set P(ℓi)

i will all be

smaller than ∆
8k and the (1− β)|P(ℓ2)

2 |-th closest point from µ
(1,1)
1 , within the set P(ℓ2)

2 will

be smaller than ∆
8k .

LEMMA 29. If totdist
(ℓk)
k ≤ ∆

8 for some ℓk, then for the loop-index ℓk, . . . , ℓ2 achieving

the above we get that there is a permutation π of [k] such that (with ℓ1 being set as ℓ2)

max
i∈[k]

‖µ(i,ℓi)i − θπ(i)‖ ≤
∆

3
.

Lemma 26, Lemma 27 and Lemma 28 together implies, provided ∆ is large enough, that
among all of the iterations of our algorithm there is an instance on which the totdist

(ℓ)
k mea-

sure becomes smaller than ∆
8 . As our algorithm finally picks the iteration step ℓ= ℓ∗ with the

lowest totdist(ℓ)k measure, it ensures that totdist(ℓ
∗
k)

k ≤ ∆
8 . In view of Lemma 29 this implies

maxi∈[k] ‖θπ(i)−µi‖ ≤∆/3, for the centroid estimates µk, . . . , µ1 generated at that iteration
stage, as required. Now we prove below Lemma 26, Lemma 27, Lemma 28 and Lemma 29.

PROOF OF LEMMA 26. In view of Lemma 25, there is a constant c1 > 0 such that

| {j ∈ [n] : Yj ∈ B(θi, c1)} | ≥ n∗i
(
1− β2

)
, i ∈ [k].(74)

As we have n∗i >
nα
k by assumption, it follows that there is a point Yi such that

| {j ∈ [n] : Yj ∈ B(Yi,2c1)} | ≥
nα

4k
(=m1).

Hence, the tightest neighborhood around any point Yi, i ∈ [n], that contains at least nα4k points
from Y1, . . . , Yn, has a radius of at most 2c1 around that Yi. Using the definition (27)

D(x,S) = {‖x− Yi‖ : i ∈ S} , x ∈R
d, S ⊆ [n],(75)

pick i∗ ∈ [n] that satisfies

{D(Yi∗, [n])}{1−
m1
n } = min

j∈[n]
{D(Yj, [n])}{1−

m1
n } .(76)

Then B(Yi∗,2c1) and ∪j∈[k]B(θj, c1) can not be disjoint, as in view of (74) it will imply that
their union will contain more than n points from Y1, . . . , Yn∣∣{i ∈ [n] : Yi ∈ B(Yi∗ ,2c1)} ∪

[
∪j∈[k] {i ∈ [n] : Yi ∈ B(θj, c1)}

]∣∣

≥ nα

4k
+
∑

j∈[k]

n∗j
(
1− β2

)
≥ (n− nout)(1− β2) +

nα

4k
> n+

nα

8k
,(77)
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where we use the fact that {i ∈ [n] : Yi ∈ B(θj, c1)} , j ∈ [k] are disjoint sets as ming 6=h∈[k] ‖θg−
θh‖ ≥∆ and nout ≤ nα

16k . Hence, Yi∗ is at a distance at most 3c1 from one of the centroids.

Without a loss of generality we can pick µ(k,1)k = Yi∗ and we assume that θk is the closest

true centroid to µ(k,1)k than any of the other centroids.

PROOF OF LEMMA 27. In view of Lemma 26 we have for c1 = σG−1
(
e−

5

4β2

)

µ
(k,1)
k ∈ B (θk,3c1) ,

∣∣{Yi : i ∈ T ∗
j } ∩ B (θj, c1)

∣∣≥ n∗j
(
1− β2

)
, j ∈ [k].(78)

We observe the following:

• The set B(µ(k,1)k ,4c1) contains B(θk, c1), which contains at least nαk (1− β2) points from

{Yi : i ∈ T ∗
k }. As the size of P(1)

k is at most
⌈
nα
4k

⌉
the distance of µ(k,1)k to any point in P(1)

k

is less than 4c1. As we have ∆≥ 32kc1 the last statement implies dist(1)k ≤ ∆
8k .

• At the last step, say ℓ̃k, in the for loop indexed by ℓk , P(ℓ̃k)
k will have at least n−m many

points. This implies:

(a) The tightest neighborhood (say N ) around µ(k,1)k with a size at least (1 − β)|P(ℓ̃k)
k |

will include at least (1− β)(n−m)≥ n− nβ −m points,

(b) (78) implies that ∪j∈[k−1]

{
{Yi : i ∈ T ∗

j } ∩ B (θj, c1)
}

will contain at least nα2k points.

Hence we get that this neighborhood N will contain at least one point y from the set
∪j∈[k−1] {Yi : i ∈ [n], Yi ∈ B(θj, c1)}. Let that y ∈ {Yi : i ∈ [n], Yi ∈ B(θj, c1)} for some

j ∈ [k− 1]. Then the distance of y from µ
(ℓ̃k)
k is at least ∆− 4c1,

‖µ(ℓ̃k)k − y‖ ≥ ‖θk − θj‖ − ‖µ(ℓ̃k)k − θk‖ − ‖θj − y‖ ≥∆− 4c1.(79)

As ∆ − 4c1 ≥ ∆
8k we have that there exist some 1 ≤ ℓk ≤ n − 1 such that dist(ℓk+1)

k > ∆
8k .

Then the following choice of ℓ̄k finishes the proof

ℓ̄k =min

{
r ≥ 1 : dist

(r+1)
k >

∆

8k

}
.

PROOF OF LEMMA 28. We will verify the result using an induction argument: The fol-
lowing is satisfied for each i = k, k − 1, . . . ,2 (induction variable). There exists an index
value ℓ̄j corresponding the the j-th loop count ℓj , for j = k, . . . ,2 such that the correspond-

ing centroids µ(k,ℓ̄k)k , . . . , µ
(i,ℓ̄i)
i satisfy

(Q1) For each g = k, . . . ,2, there is one θg , such that ‖θg − µ
(g,ℓg)
g ‖ ≤ 3σG−1

(
e−

5

4β2

)
.

(Q2) At the ℓi-th step the distance to the (1− β)|P(ℓi)
i |-th closest point from µ

(i,1)
i , within

the set P(ℓi)
i will all be smaller than ∆

8k .
(Q3) For h= 1, . . . , i− 1

∣∣∣∣P
(ℓ̄i)
i ∩ {Yj : j ∈ T ∗

h}
∣∣∣∣≥ n∗h − (k− i+ 1)nβ − 5(k− i+1)n∗h

4 log(1/(G(∆/16σk)))
.

(Q4)

∣∣∣∣P
(ℓ̄i)
i ∩

{
∪kg=i{Yj : j ∈ T ∗

g }
}∣∣∣∣≤ (k− i+ 1)m+

5
∑
k
g=i n

∗
g

4 log(1/G(∆/(16kσ))) .
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Base case i = k. Note that our algorithm starts by picking the tightest neighborhood

with m1 points, and then we keep adding m points from P(ℓk)
k to P(ℓk)

k at each step.

In view of Lemma 26 we get that the approximate µ(k,1)k lies within a radius 3c1, with

c1 = σG−1
(
e−

5

4β2

)
, of θk, and hence (Q1) is satisfied. In view of Lemma 27, when we

run the k-th for loop at the iteration ℓ̄k , we get dist(ℓ̄k)k ≤ ∆
8k , and hence (Q2) is satisfied.

Let ℓ̄k is as in Lemma 27. Without a loss of generality we assume that θk is the closest
centroid to µ(k,1)k and (78) holds. We first prove the following claims:

∣∣∣P(ℓ̄k)
k ∩ {Yi : i ∈ T ∗

k }
∣∣∣≥ n∗k −m− 5n∗k

4 log(1/(G(∆/16σk)))
(80)

∣∣∣P(ℓ̄k)
k ∩ {Yi : i ∈ T ∗

j }
∣∣∣≤ nβ +

5n∗j
4 log(1/(G(∆/16σk)))

, j ∈ [k− 1].(81)

The first claim (80) follows from the following sequence of arguments (note the definition in
(27))

• Using µ(k,ℓ̄k)k = µ
(k,ℓ̄k+1)
k and from Lemma 27 we get

{
D(µ

(k,ℓ̄k)
k ,P(ℓ̄k+1)

k )
}{1−β}

=
{
D(µ

(k,ℓ̄k+1)
k ,P(ℓ̄k+1)

k )
}{1−β}

= dist
(ℓ̄k+1)
k >

∆

8k
,

which implies

P(ℓ̄k+1)
k ⊇ {Yi : i ∈ [n]} ∩ B

(
µ
(k,ℓ̄k)
k ,

∆

8k

)
.(82)

As we have P(ℓ̄k)
k ⊂ P(ℓ̄k+1)

k and |P(ℓ̄k)
k | ≤ |P(ℓ̄k+1)

k | ≤ |P(ℓ̄k)
k |+m, we get that there is a

set A⊆ {Yi : i ∈ [n]} that satisfies

P(ℓ̄k)
k ⊇P(ℓ̄k+1)

k /A, |A| ≤m.

In view of (82) the last display implies
{
P(ℓ̄k)
k ∩ {Yi : i ∈ T ∗

k }
}
⊇
{
P(ℓ̄k+1)
k ∩ {Yi : i ∈ T ∗

k }/A
}

⊇
{
B
(
µ
(k,ℓ̄k)
k ,

∆

8k

)
∩ {Yi : i ∈ T ∗

k }/A
}
,(83)

and hence
∣∣∣P(ℓ̄k)

k ∩ {Yi : i ∈ T ∗
k }
∣∣∣≥
∣∣∣∣B
(
µ
(k,ℓ̄k)
k ,

∆

8k

)
∩ {Yi : i ∈ T ∗

k }
∣∣∣∣− |A|

≥
∣∣∣∣B
(
µ
(k,ℓ̄k)
k ,

∆

8k

)
∩ {Yi : i ∈ T ∗

k }
∣∣∣∣−

nβ2

2
.(84)

• Note that we have from (78) and ∆≥ 48σk:

B
(
µ
(k,ℓ̄k)
k ,

∆

8k

)
⊇B

(
θk,

∆

8k
− 3c1

)
⊇B

(
θk,

∆

16k

)
.(85)

In view of Lemma 25(ii) this implies
∣∣∣∣B
(
µ
(k,ℓ̄k)
k ,

∆

8k

)
∩ {Yi : i ∈ T ∗

k }
∣∣∣∣≥
∣∣∣∣B
(
θk,

∆

16k

)
∩ {Yi : i ∈ T ∗

k }
∣∣∣∣

≥ n∗k

(
1− 5

4 log
(
1/G

(
∆

16σk

))
)

≥ n∗k −
5n∗k

4 log(1/(G(∆/16σk)))
.(86)



42

Combining (84) and (86) we get (80).
Next, to prove the claim (81), we note that:

• In view of Lemma 25, for each j = 1, . . . , k−1, there are at most
5n∗

j

4 log(1/(G(∆/16σk))) many

points from
{
Yi : i ∈ T ∗

j

}
outside B(θj, ∆

16k ). In view of (78) and µ(k,ℓ̄k)k = µ
(k,1)
k we get

B
(
µ
(k,ℓ̄k)
k , ∆8k

)
is a subset of B

(
θk,

∆
8k +3c1

)
as ∆≥ 24c1k. Hence we get B

(
µ
(k,ℓ̄k)
k , ∆8k

)

and ∪k−1
j=1B(θj, ∆

16k ) are disjoint, and hence we have for each j = 1, . . . , k− 1
∣∣∣∣P

(ℓ̄k)
k ∩ {Yi : i ∈ T ∗

j } ∩ B
(
µ
(k,ℓ̄k)
k ,

∆

8k

)∣∣∣∣

≤
∣∣∣∣{Yi : i ∈ T

∗
j }/∪k−1

j=1B
(
θj,

∆

16k

)∣∣∣∣≤
5n∗j

4 log(1/(G(∆/16σk)))
.(87)

• On the other hand, from Lemma 27 we have dist
(ℓ̄k)
k =

{
D(µ

(k,ℓ̄k)
k ,P(ℓ̄k)

k )
}{1−β}

≤ ∆
8k .

This implies that for each j ∈ [k− 1]
∣∣∣∣P

(ℓ̄k)
k ∩ {Yi : i ∈ T ∗

j }/B
(
µ
(k,ℓ̄k)
k ,

∆

8k

)∣∣∣∣≤ nβ.(88)

Combining (87) and (88) we get (81).
Hence, we have proven the inequalities (80) and (81). These inequalities together imply

∣∣∣∣P
(ℓ̄k)
k ∩ {Yi : i ∈ T ∗

j }
∣∣∣∣≥ n∗j − nβ −

5n∗j
4 log(1/(G(∆/16σk)))

, j ∈ [k− 1](89)

∣∣∣∣P
(ℓ̄k)
k ∩ {Yi : i ∈ T ∗

k }
∣∣∣∣≤m+

5n∗k
4 log(1/(G(∆/16σk)))

.(90)

The first inequality above verifies (Q3) and the second inequality verifies (Q4).

Induction step from i to i − 1. To complete the induction argument, let us suppose that
the statement holds for some 3≤ i≤ k and we intend to prove the case of i− 1. The proof
of (Q1) follows from the following general result. The proof is essentially a repetition of
argument as in the proof of Lemma 26, and is presented at the end of this section.

LEMMA 30. Suppose that we have for i≥ 3 and h= 1, . . . , i− 1
∣∣∣∣P

(ℓ̄i)
i ∩ {Yj : j ∈ T ∗

h}
∣∣∣∣≥

3n∗h
5
,

∣∣∣∣P
(ℓ̄i)
i ∩

{
∪kg=i{Yj : j ∈ T ∗

g }
}∣∣∣∣≤

nαβ

5k
.

Then there is a centroid θi−1 such that ‖µ(i−1,1)
i−1 − θi−1‖ ≤ 3σG−1

(
e−

5

4β2

)
if ∆ ≥

16σkG−1
(
e−

5k

α

)
.

Next we prove (Q2) for the loop indexed by ℓi−1. In view of the Lemma 30 and Lemma 25
we note that

µ
(i−1,1)
i−1 ∈ B (θi−1,3c1) , |{Yj : j ∈ T ∗

h} ∩ B (θh, c1)| ≥ n∗h
(
1− β2

)
, h ∈ [i− 1].(91)

where c1 = σG−1
(
e−

5

4β2

)
. In view of a reasoning similar as in the proof of Lemma 27

we note the following. As we keep adding m points from P(ℓi−1)
i−1 to P(ℓi−1)

i−1 at each step
ℓi−1 = 2, . . . ,

⌊
n′−m1

m

⌋
, note that at some stage ℓi−1, before we exhaust all the points, the
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distance to the (1 − β)|P(ℓi−1)
i−1 |-th closest point from µ

(i−1,1)
i−1 , within the set P(ℓi−1)

i−1 will
exceed ∆

8k . Hence, to prove our claim (Q2) we observe the following:

• In view of (91) we have B(µ(i−1,1)
i−1 ,4c1)⊇B(θi−1, c1), which implies

∣∣∣{Yj : j ∈ T ∗
i−1}/B(µ

(i−1,1)
i−1 ,4c1)

∣∣∣≤
∣∣{Yj : j ∈ T ∗

i−1}/B(θi−1, c1)
∣∣≤ n∗i−1β

2.(92)

In view of the assumption (Q3) at the induction step i the last display implies
∣∣∣∣P

(ℓ̄i)
i ∩ {Yj : j ∈ T ∗

i−1} ∩ B(µ(i−1,1)
i−1 ,4c1)

∣∣∣∣

=

∣∣∣∣P
(ℓ̄i)
i ∩ {Yj : j ∈ T ∗

i−1}
∣∣∣∣−
∣∣∣∣P

(ℓ̄i)
i ∩ {Yj : j ∈ T ∗

i−1}/B(µ
(i−1,1)
i−1 ,4c1)

∣∣∣∣

≥
∣∣∣∣P

(ℓ̄i)
i ∩ {Yj : j ∈ T ∗

i−1}
∣∣∣∣−
∣∣∣{Yj : j ∈ T ∗

i−1}/B(µ
(i−1,1)
i−1 ,4c1)

∣∣∣

(a)

≥ n∗i−1 − (k− i+ 1)nβ − n∗i−1β
2 − 5(k− i+1)n∗i−1

4 log(1/(G
(

∆
16σk

)
))

(b)

≥ nα

2k
,(93)

where (a) used the inequality (92) and (b) holds whenever ∆ ≥ 16σkG−1
(
e−

10k

α

)
as

(k − i + 1)nβ ≤ nα
4k , nβ

2 ≤ nα
16k4 . As the size of P(1)

i−1 is at most
⌈
nα
4k

⌉
the distance of

µ
(i−1,1)
i−1 to any point in P(1)

i−1 is less than 4c1, which implies dist(1)i−1 ≤ ∆
8k .

• We first note that at the last step, say ℓ̃i−1, in the for loop indexed by ℓi−1, P(ℓ̃i−1)
i−1 will

have at most m many points and
∣∣∣∣P

(ℓ̃i)
i

∣∣∣∣= P(ℓ̃i−1)
i−1 ∪P(ℓ̃i−1)

i−1 ,

∣∣∣∣P
(ℓ̃i−1)
i−1

∣∣∣∣≤m.(94)

Hence, in view of (Q3) and n∗1 ≥ 4nβ we get
∣∣∣P(ℓ̃i−1)

i−1 ∩ {Yj : j ∈ T ∗
1 }
∣∣∣

≥
∣∣∣∣P

(ℓ̃i)
i ∩ {Yj : j ∈ T ∗

1 }
∣∣∣∣−m

(a)

≥ n∗1 − knβ − nβ2

2
− 5kn∗1

4 log(1/G( ∆
16σk ))

(b)

≥ 2nβ,(95)

where (a) followed from (94) and (b) followed as ∆ ≥ 16σkG−1
(
e−

5k2

α

)
and knβ ≤

nα
4k , nβ

2 ≤ nα
16k4 . As the tightest neighborhood (say N ) around µ

(i−1,1)
i−1 with a size at

least (1 − β)|P(ℓ̃i−1)
i−1 | will exclude at most nβ points from P(ℓ̃i−1)

i−1 , in view of (95) we
get that the neighborhood N will include at least nβ points from {Yj : j ∈ T ∗

1 }. Now,
(78) implies that {Yi : i ∈ T ∗

1 } ∩ B (θ1, c1) will contain at lest n∗1(1 − β2) points from
{Yj : j ∈ T ∗

1 }, hence we get that the above neighborhood N will contain at least one

point y ∈ {Yj : j ∈ [n], Yi ∈ B(θ1, c1)}. Then the distance of y from µ
(i−1,ℓ̃i−1)
i−1 is at least

∆− 4c1,

‖µ(i−1,ℓ̃i−1)
i−1 − y‖ ≥ ‖θ1 − θi−1‖ − ‖µ(i−1,ℓ̃i−1)

i−1 − θi−1‖ − ‖θ1 − y‖ ≥∆− 4c1.(96)

Hence we have that there exist some 1 ≤ ℓi−1 ≤ n− 1 such that dist(ℓi−1+1)
i−1 > ∆

8k . Choose
ℓ̄i−1 as

ℓ̄i−1 =min

{
r ≥ 1 : dist

(r+1)
i−1 >

∆

8k

}
.(97)
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to satisfy the condition (Q2).
Next we establish (Q3) and (Q4) for the induction level i− 1. Let ℓ̄i−1 is as in the last

definition. We prove the following claims: For h= 1, . . . , i− 2
∣∣∣∣P

(ℓ̄i−1)
i−1 ∩ {Yj : j ∈ T ∗

h}
∣∣∣∣≥ n∗h − (k − i+2)nβ − 5(k − i+2)n∗h

4 log(1/(G(∆/16σk)))
,(98)

∣∣∣∣P
(ℓ̄i−1)
i−1 ∩ {Yj : j ∈ T ∗

i−1}
∣∣∣∣≤m+

5n∗i−1

4 log(1/(G(∆/16σk)))
.(99)

To prove the claim (98), we note that:

• In view of Lemma 25, for each h= 1, . . . , i− 2, there are at most 5n∗
h

4 log(1/(G( ∆

16σk
)))

many

points from {Yj : j ∈ T ∗
h} outside B(θh, ∆

16k ). In view of (91) we get

B
(
µ
(i−1,ℓ̄i−1)
i−1 ,

∆

8k

)
⊆B

(
θi−1,

∆

8k
+ 4c1

)
.

This implies B
(
µ
(i−1,ℓ̄i−1)
i−1 , ∆8k

)
and ∪i−2

h=1B(θh, ∆
16k ) are disjoint. Hence for h ∈ [i− 2]

∣∣∣∣P
(ℓ̄i−1)
i−1 ∩ {Yj : j ∈ T ∗

h} ∩ B
(
µ
(i−1,ℓ̄i−1)
i−1 ,

∆

8k

)∣∣∣∣

≤
∣∣∣∣{Yj : j ∈ T

∗
h}/∪i−2

h=1B
(
θh,

∆

16k

)∣∣∣∣≤
5n∗h

4 log(1/(G(∆/16σk)))
,(100)

where the last inequality followed from Lemma 25.
• On the other hand, in view of already proven (Q2) at the induction step i − 1 we get

dist
(ℓ̄i−1)
i−1 =

{
D(µ

(i−1,ℓ̄i−1)
i−1 ,P(ℓ̄i−1)

i−1 )
}{1−β}

≤ ∆
8k , which implies that for each h ∈ [i− 2]

∣∣∣∣P
(ℓ̄i−1)
i−1 ∩ {Yj : j ∈ T ∗

h}/B
(
µ
(i−1,ℓ̄i−1)
i−1 ,

∆

8k

)∣∣∣∣≤ nβ.(101)

Combining (100) and (101) we get
∣∣∣P(ℓ̄i−1)

i−1 ∩ {Yj : j ∈ T ∗
h}
∣∣∣

≤
∣∣∣∣P

(ℓ̄i−1)
i−1 ∩ {Yj : j ∈ T ∗

h} ∩ B
(
µ
(i−1,ℓ̄i−1)
i−1 ,

∆

8k

)∣∣∣∣+
∣∣∣∣P

(ℓ̄i−1)
i−1 ∩ {Yj : j ∈ T ∗

h}/B
(
µ
(i−1,ℓ̄i−1)
i−1 ,

∆

8k

)∣∣∣∣

≤ nβ +
5n∗h

4 log(1/(G(∆/16σk)))
.

Combining the above display with (Q3) at the induction level i we get for each h ∈ [i− 2]
∣∣∣∣P

(ℓ̄i−1)
i−1 ∩ {Yj : j ∈ T ∗

h}
∣∣∣∣=
∣∣∣∣P

(ℓ̄i)
i ∩ {Yj : j ∈ T ∗

h}
∣∣∣∣−
∣∣∣P(ℓ̄i−1)

i−1 ∩ {Yj : j ∈ T ∗
h}
∣∣∣

≥ n∗h − (k− i+ 2)nβ − 5(k − i+2)n∗h
4 log(1/(G(∆/16σk)))

.(102)

This completes the verification of (Q3) for the level i− 1.
The claim (99) follows from the following sequence of arguments (note the definition in

(27))



ROBUST CLUSTERING VIA TRIMMED MEAN 45

• Using µ(i−1,ℓ̄i−1)
i−1 = µ

(i−1,ℓ̄i−1+1)
i−1 and (97) we get

{
D(µ

(i−1,ℓ̄i−1)
i−1 ,P(ℓ̄i−1+1)

i−1 )
}{1−β}

=
{
D(µ

(i−1,ℓ̄i−1+1)
i−1 ,P(ℓ̄i−1+1)

i−1 )
}{1−β}

= dist
(ℓ̄i−1+1)
i−1 >

∆

8k
,

which implies

P(ℓ̄i−1+1)
i−1 ⊇P(ℓ̄i)

i ∩B
(
µ
(i−1,ℓ̄i−1)
i−1 ,

∆

8k

)
.(103)

As we have P(ℓ̄i−1)
i−1 ⊂ P(ℓ̄i−1+1)

i−1 and |P(ℓ̄i−1)
i−1 | ≤ |P(ℓ̄i−1+1)

i−1 | ≤ |P(ℓ̄i−1)
i−1 |+ nβ2

2 , we get that
there is a set A⊆ {Yi : i ∈ [n]} that satisfies

P(ℓ̄i−1)
i−1 ⊇P(ℓ̄i−1+1)

i−1 /A, |A| ≤m.

In view of (103) the last display implies
{
P(ℓ̄i−1)
i−1 ∩ {Yj : j ∈ T ∗

i−1}
}
⊇
{
P(ℓ̄i−1+1)
i−1 ∩ {Yj : j ∈ T ∗

i−1}/A
}

⊇
{
P(ℓ̄i)
i ∩B

(
µ
(i−1,ℓ̄i−1)
i−1 ,

∆

8k

)
∩ {Yj : j ∈ T ∗

i−1}/A
}
,(104)

and hence
∣∣∣P(ℓ̄i−1)

i−1 ∩ {Yj : j ∈ T ∗
i−1}

∣∣∣≥
∣∣∣∣P

(ℓ̄i)
i ∩B

(
µ
(i−1,ℓ̄i−1)
i−1 ,

∆

8k

)
∩ {Yj : j ∈ T ∗

i−1}
∣∣∣∣− |A|

≥
∣∣∣∣P

(ℓ̄i)
i ∩B

(
µ
(i−1,ℓ̄i−1)
i−1 ,

∆

8k

)
∩ {Yj : j ∈ T ∗

i−1}
∣∣∣∣−m.(105)

• As we have from (91) and ∆≥ 48c1k:

B
(
µ
(i−1,ℓ̄i−1)
i−1 ,

∆

8k

)
⊇B

(
θi−1,

∆

8k
− 3c1

)
⊇B

(
θi−1,

∆

16k

)
,

in view of Lemma 25(ii) we get
∣∣∣∣P

(ℓ̄i)
i ∩B

(
µ
(i−1,ℓ̄i−1)
i−1 ,

∆

8k

)
∩ {Yj : j ∈ T ∗

i−1}
∣∣∣∣

≥
∣∣∣∣P

(ℓ̄i)
i ∩B

(
θi−1,

∆

16k

)
∩ {Yj : j ∈ T ∗

i−1}
∣∣∣∣

≥
∣∣∣∣P

(ℓ̄i)
i ∩ {Yj : j ∈ T ∗

i−1}
∣∣∣∣−
∣∣∣∣{Yj : j ∈ T

∗
i−1}/B

(
θi−1,

∆

16k

)∣∣∣∣

≥
∣∣∣∣P

(ℓ̄i)
i ∩ {Yj : j ∈ T ∗

i−1}
∣∣∣∣−

5n∗i−1

4 log(1/(G(∆/16σk)))
.(106)

where the last inequality followed from Lemma 25.

Combining (105), (106) and P(ℓ̄i)
i =P(ℓ̄i−1)

i−1 ∪P(ℓ̄i−1)
i−1 we get

∣∣∣∣P
(ℓ̄i−1)
i−1 ∩ {Yj : j ∈ T ∗

i−1}
∣∣∣∣=
∣∣∣∣P

(ℓ̄i)
i ∩ {Yj : j ∈ T ∗

i−1}
∣∣∣∣−
∣∣∣P(ℓ̄i−1)

i−1 ∩ {Yj : j ∈ T ∗
i−1}

∣∣∣

≤m+
5n∗i−1

4 log(1/(G(∆/16σk)))
.
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In view of (Q4) for the induction level i, with P(ℓ̄i−1)
i−1 ⊆P(ℓ̄i)

i we get
∣∣∣∣P

(ℓ̄i−1)
i−1 ∩

{
∪kg=i−1{Yj : j ∈ T ∗

g }
}∣∣∣∣≤

∣∣∣∣P
(ℓ̄i)
i ∩

{
∪kg=i{Yj : j ∈ T ∗

g }
}∣∣∣∣+

∣∣∣∣P
(ℓ̄i−1)
i−1 ∩ {Yj : j ∈ T ∗

i−1}
∣∣∣∣

≤ (k − i+2)m+
5
∑k

g=i−1 n
∗
g

4 log(1/G(∆/(16kσ)))
.(107)

This concludes the checking of (Q4) for the induction level i − 1. This also concludes the
proof of the induction results.

In view of the induction arguments, we have that

dist
(ℓ̄i)
i ≤ ∆

8k
, i= k, k− 1, . . . ,2.(108)

Finally, to complete the proof of Lemma 28 it remains to show that dist(ℓ2)1 ≤ ∆
8k . In view of

the induction statement we have that

1.

∣∣∣∣P
(ℓ̄2)
2 ∩ {Yj : j ∈ T ∗

1 }
∣∣∣∣≥ n∗1 − (k− 1)nβ − 5(k−1)n∗

1

4 log(1/(G(∆/16σk))) .

2.

∣∣∣∣P
(ℓ̄2)
2 ∩

{
∪kg=2{Yj : j ∈ T ∗

g }
}∣∣∣∣≤ (k−1)m+

5
∑k
g=2 n

∗
g

4 log(1/G(∆/(16σk))) ≤
nαβ
8k +

5
∑k
g=2 n

∗
g

4 log(1/G(∆/(16σk))) .

According to Algorithm 5, in the final stage, to find µ(1,ℓ̄2)1 we deploy the HDP1−β algorithm.
In view of ∣∣∣∣{Yj : j ∈ T

∗
1 }/B

(
θ1,

∆

16k

)∣∣∣∣≤
5n∗1

4 log(1/(G(∆/16σk)))

from Lemma 25, we have
∣∣∣∣P

(ℓ̄2)
2 /B

(
θ1,

∆

16k

)∣∣∣∣

=

∣∣∣∣
{
P(ℓ̄2)
2 ∩ {Yj : j ∈ T ∗

1 }/B
(
θ1,

∆

16k

)}
∪
{
P(ℓ̄2)
2 ∩

{
∪kg=2{Yj : j ∈ T ∗

g }
}
/B
(
θ1,

∆

16k

)}∣∣∣∣+ nout

≤
∣∣∣∣{Yj : j ∈ T

∗
1 }/B

(
θ1,

∆

16k

)∣∣∣∣+
∣∣∣∣P

(ℓ̄2)
2 ∩

{
∪kg=2{Yj : j ∈ T ∗

g }
}∣∣∣∣+ nout

≤ 5n∗1
4 log(1/(G(∆/16σk)))

+ (k − 1)
nβ2

2
+

5
∑k

g=2 n
∗
g

4 log(1/G(∆/(16σk)))
+ nout

≤ nαβ

8k
+

5n

2 log(1/(G(∆/(16σk))))
+ nout ≤ n∗1β

4
,

where the last inequality followed from

∆≥ 16kσG−1
(
c−

40

αβ

)
, nout ≤ nαβ

16k
.

As we have ∣∣∣∣P
(ℓ̄2)
2

∣∣∣∣≥
∣∣∣∣P

(ℓ̄2)
2 ∩ {Yj : j ∈ T ∗

1 }
∣∣∣∣≥

n∗1
2
,(109)

any subset of P(ℓ̄2)
2 with size (1− β)

∣∣∣∣P
(ℓ̄2)
2

∣∣∣∣, discards a set of size at least n
∗
1β
2 from P(ℓ̄2)

2 .

Hence the tightest subset of P(ℓ̄2)
2 with size (1− β)

∣∣∣∣P
(ℓ)
1

∣∣∣∣ will have a diameter of at most
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∆
16k . This implies dist

(ℓ̄2)
1 ≤ ∆

16k . In view of (108) this proves that there is a path of indices

ℓ̄k, . . . ℓ̄2 such that dist(ℓ̄2)1 +
∑k

h=2 dist
(ℓ̄h)
h ≤ ∆

8 . Hence, when we pick the indices to optimize

totdist, we get minℓk totdist
(ℓk)
k ≤ ∆

8 , as required.

PROOF OF LEMMA 28. Note that the term totdist
(ℓk)
k is given by

∑k
i=1 dist

(ℓi)
i for some

sequence of indices originating from the inbuilt for-loops at different levels ℓk, . . . , ℓ2 and
ℓ2 = ℓ1. Hence it suffices to prove that if the sum

∑k
i=1 dist

(ℓi)
i is smaller than ∆

8 for any
sequence of the loop counts we have good centroid approximations. This is summarized in
the following result.

LEMMA 31. Suppose that for a sequence of indices ℓ1, . . . , ℓk we have
∑k

i=1 dist
(ℓi)
i ≤

∆
8 . Then if the corresponding centroids are {µ(i,ℓi)i }ki=1, with ℓ2 = ℓ1, we get that there is a

permutation π of [k] such that µi,ℓii ∈ B(θπ(i),∆/3) for each i ∈ 1, . . . , k.

PROOF. First we show that all of the centroids lie in ∪ki=1B(θi,∆/3). If not, without a

loss of generality let µ(1,ℓ1)1 lie outside ∪ki=1B(θi,∆/3). Then we have
∣∣∣∣{Yi : i ∈ [n]} ∩ B

(
µ
(1,ℓ1)
1 ,

∆

8

)∣∣∣∣

≤
∣∣∣∣{Yi : i ∈ [n]}/ ∪ki=1 B(θi,

∆

8
)

∣∣∣∣≤
5n

4 log(1/(G(∆/16σk)))
+ nout,(110)

where the last inequality followed from Lemma 25. For an ease of notation, throughout the
proof we define

ℓ1 , ℓ2, P(ℓ1)
1 , P(ℓ2)

1 , µ
(1,ℓ1)
1 , µ

(1,ℓ2)
1 .(111)

Note that in terms of the indices ℓ2, . . . , ℓk we have the partition of {Yi : i ∈ [n]} as

{Yi : i ∈ [n]}= ∪kg=1P(ℓg)
g , P(ℓg)

g ∩P(ℓh)
h = φ, g 6= h ∈ [k].(112)

In view of the assumption dist
(ℓ1)
1 ≤ ∆

8 and the fact that the
∣∣∣P(ℓ1)

1 ∩B
(
µ
(1,ℓ1)
1 ,dist

(ℓ1)
1

)∣∣∣≥

(1− β)
∣∣∣P(ℓ1)

1

∣∣∣ we have
∣∣∣∣P

(ℓ1)
1 /B

(
µ
(1,ℓ1)
1 ,

∆

8

)∣∣∣∣≤
∣∣∣P(ℓ1)

1 /B
(
µ
(1,ℓ1)
1 ,dist

(ℓ1)
1

)∣∣∣≤ nβ.(113)

In view of (110) the last display implies
∣∣∣P(ℓ1)

1

∣∣∣≤
∣∣∣∣P

(ℓ1)
1 /B

(
µ
(1,ℓ1)
1 ,

∆

8

)∣∣∣∣+
∣∣∣∣{Yi : i ∈ [n]} ∩ B

(
µ
(1,ℓ1)
1 ,

∆

8

)∣∣∣∣

≤ nβ +
3n

4 log(1/(G(∆/16σk)))
+ nout.(114)

As ∪ki=2P
(ℓi)
i and P(ℓ1)

1 are disjoint and their union covers all the data points, the last display
implies for any j = 2, . . . , k
∣∣∣{Yi : i ∈ T ∗

j } ∩
{
∪kg=2P(ℓg)

g

}∣∣∣=
∣∣∣{Yi : i ∈ T ∗

j }/P
(ℓ1)
1

∣∣∣

≥ n∗j − nβ − 5n

4 log(1/(G(∆/16σk)))
− nout ≥ 7nα

8k
,(115)
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where the last inequality follows from β ≤ α
12k as k ≥ 3, ∆≥ and nout ≤ nβ

2 . Then we have
for j = 1, . . . , k

∣∣∣{Yi : i ∈ T ∗
j } ∩

[
∪kg=2

{
P(ℓg)
g ∩B(µ(g,ℓg)g ,dist(ℓg)g )

}]∣∣∣

=
∣∣∣{Yi : i ∈ T ∗

j } ∩
{
∪kg=2P(ℓg)

g

}
∩
[
∪kg=2

{
P(ℓg)
g ∩ B(µ(g,ℓg)g ,dist(ℓg)g )

}]∣∣∣

=
∣∣∣{Yi : i ∈ T ∗

j } ∩
{
∪kg=2P(ℓg)

g

}∣∣∣

−
∣∣∣{Yi : i ∈ T ∗

j } ∩
{
∪kg=2P(ℓg)

g

}
/
[
∪kg=2

{
P(ℓg)
g ∩B(µ(g,ℓg)g ,dist(ℓg)g )

}]∣∣∣

≥
∣∣∣{Yi : i ∈ T ∗

j } ∩
{
∪kg=2P(ℓg)

g

}∣∣∣

−
∣∣∣
{
∪kg=2P(ℓg)

g

}
/
[
∪kg=2

{
P(ℓg)
g ∩B(µ(g,ℓg)g ,dist(ℓg)g )

}]∣∣∣

(a)

≥ 7nα

8k
−
∣∣∣∪kg=2

{
P(ℓg)
g /B(µ(g,ℓg)g ,dist(ℓg)g )

}∣∣∣

=
7nα

8k
−

k∑

g=2

∣∣∣P(ℓg)
g /B(µ(g,ℓg)g ,dist(ℓg)g )

∣∣∣
(b)

≥ 7nα

8k
− nβ ≥ 3nα

4k
,(116)

where (a) followed (115) and the fact that {P(ℓg)
g }kg=2 are disjoint and (b) followed from as

k∑

g=2

∣∣∣P(ℓg)
g /B(µ(g,ℓg)g ,dist(ℓg)g )

∣∣∣≤ β
k∑

g=2

∣∣∣P(ℓg)
g

∣∣∣≤ nβ.

As we have for each j = 1, . . . , k

{Yi : i ∈ T ∗
j } ∩

[
∪kg=2

{
P(ℓg)
g ∩B(µ(g,ℓg)g ,dist(ℓg)g )

}]

= ∪kg=2

{
{Yi : i ∈ T ∗

j } ∩ P(ℓg)
g ∩B(µ(g,ℓg)g ,dist(ℓg)g )

}

with the union on right side of the above display is disjoint, by the pigeon hole principle there
exist indices g, j1, j2 such that
∣∣∣
{
P(ℓg)
g ∩B(µ(g,ℓg)g ,dist(ℓg)g )

}
∩ {Yi : i ∈ T ∗

j }
∣∣∣

≥
minkj=1

∣∣∣{Yi : i ∈ T ∗
j } ∩

[
∪kg=2

{
P(ℓg)
g ∩B(µ(g,ℓg)g ,dist

(ℓg)
g )

}]∣∣∣
k

≥ 3nα

4k2
, j = j1, j2,

where the last display followed using (116). However, as ∆≥ 16σkG
−1

(
e−

5k2

α

)

implies

∣∣{Yi : i ∈ T ∗
j }/B(θj ,∆/3)

∣∣≤
5n∗j

4 log(1/G(∆/16σk))
≤ nα

4k2
, j = j1, j2,

we get that for j = j1, j2
∣∣∣
{
P(ℓg)
g ∩B(µ(g,ℓg)g ,dist(ℓg)g )

}
∩ {Yi : i ∈ T ∗

j } ∩ B(θj,∆/3)
∣∣∣

≥
∣∣∣
{
P(ℓg)
g ∩B(µ(g,ℓg)g ,dist(ℓg)g )

}
∩ {Yi : i ∈ T ∗

j }
∣∣∣−
∣∣{Yi : i ∈ T ∗

j }/B(θj ,∆/3)
∣∣≥ nα

2k2
.
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Hence, there exists x, y ∈ {Yi : i ∈ [n]} such that

x ∈
{
P(ℓg)
g ∩B(µ(g,ℓg)g ,dist(ℓg)g )

}
∩ {Yi : i ∈ T ∗

j1} ∩ B(θj1,∆/3),

y ∈
{
P(ℓg)
g ∩B(µ(g,ℓg)g ,dist(ℓg)g )

}
∩ {Yi : i ∈ T ∗

j2} ∩ B(θj2,∆/3).(117)

As we have dist
(ℓg)
g ≤ ∆

8 and ‖θj1 − θj2‖ ≥∆ we get a contradiction

‖x− y‖ ≥ ‖θj1 − θj2‖ − ‖x− θj1‖ − ‖y − θj2‖ ≥
∆

3
.

‖x− y‖ ≤ ‖x− µ(g,ℓg)g ‖+ ‖y − µ(g,ℓg)g ‖ ≤ 2dist(ℓg)g ≤ ∆

4
.(118)

Hence all of the centroids lie in ∪ki=1B(θi,∆/3).
Now it remains to show that

{
µ
(g,ℓg)
g

}k
g=1

lie in different balls among {B(θg,∆/3)}kg=1.

If not, then without a loss of generality let B
(
θ1,

∆
3

)
contains two of the centroids, say

µ
(j1,ℓj1)
j1

, µ
(j2,ℓj2)
j2

. Also, as B
(
θ1,

∆
3

)
contains two centroids, by the pigeonhole principle we

get that there is an index g 6= 1 such that

µ
(j,ℓj)
j /∈ B

(
θg,

∆

3

)
, j = 1, . . . , k.

In view of the disjoint union
{
B
(
θg,

∆
8

)}k
g=1

,and dist
(ℓj)
j ≤ ∆

8 the above implies

B
(
θg,

∆

8

)
∩B

(
µ
(j,ℓj)
j ,dist

(ℓj)
j

)
= φ, j = 1, . . . , k.(119)

Note that by Lemma 25
∣∣∣∣{Yi : i ∈ [n]} ∩ B

(
θg,

∆

8

)∣∣∣∣≥
nα

2k
.(120)

As the disjoint union ∪km=1P
(ℓm)
m is the entire set of data points, we get

{Yi : i ∈ [n]} ∩ B
(
θg,

∆

8

)
=
{
∪kj=1P

(ℓj)
j

}
∩B

(
θg,

∆

8

)

= ∪kj=1

{
P(ℓj)
j ∩ B

(
θg,

∆

8

)}
⊆∪kj=1

{
P(ℓj)
j /B

(
µ
(j,ℓj)
j ,dist

(ℓj)
j

)}
,(121)

which implies
∣∣∣∣{Yi : i ∈ [n]} ∩ B

(
θg,

∆

8

)∣∣∣∣≤
k∑

j=1

{
P(ℓj)
j /B

(
µ
(j,ℓj)
j ,dist

(ℓj)
j

)}

≤
k∑

j=1

β
∣∣∣P(ℓj)

j

∣∣∣≤ nβ =
nα

4k2
.(122)

This provides a contradiction to (120). Hence, all the centroids must lie in different B
(
θj,

∆
3

)

sets.
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PROOF OF LEMMA 30. In view of Lemma 25, there is a constant c1 = σG−1
(
e−

5

4β2

)

such that

|{Yj : j ∈ T ∗
h}/B(θh, c1)| ≤ n∗hβ

2, h ∈ [k].(123)

Hence we get that for h ∈ [i− 1]
∣∣∣∣P

(ℓ̄i)
i ∩ {Yj : j ∈ T ∗

h} ∩ B(θh, c1)
∣∣∣∣

=

∣∣∣∣P
(ℓ̄i)
i ∩ {Yj : j ∈ T ∗

h}
∣∣∣∣−
∣∣∣∣P

(ℓ̄i)
i ∩ {Yj : j ∈ T ∗

h}/B(θh, c1)
∣∣∣∣

≥
∣∣∣∣P

(ℓ̄i)
i ∩ {Yj : j ∈ T ∗

h}
∣∣∣∣− |{Yj : j ∈ T ∗

h}/B(θh, c1)|

≥
∣∣∣∣P

(ℓ̄i)
i ∩ {Yj : j ∈ T ∗

h}
∣∣∣∣− n∗hβ

2(124)

≥ n∗h − (k− i+ 1)nβ − 5(k− i+1)n∗h
4 log(1/(G(∆/16σk)))

− n∗hβ
2 ≥m1.

where the last inequality holds whenever∆≥ 16σkG−1
(
e−

5k

α

)
as (k− i+1)nβ,nβ2 ≤ nα

4k .

As we have from the lemma statement∣∣∣∣P
(ℓ̄i)
i ∩

{
∪kg=i{Yj : j ∈ T ∗

g }
}∣∣∣∣≤

2nαβ

5k
≤ m1

2
,(125)

we get that the tightest neighborhood around any point in P(ℓ̄i)
i with a size m1 will have

a radius of at most 2c1 around that Yi. Let µ(i−1,1)
i−1 = Yi∗ be the chosen centroid. Hence∣∣∣∣

{
P(ℓ̄i)
i ∩ B(Yi∗,2c1)

}∣∣∣∣ ≥m1. Then B(Yi∗,2c1) and ∪j∈[i−1]B(θj, c1) can not be disjoint,

as in view of (124) it will imply that
∣∣∣∣P

(ℓ̄i)
i

∣∣∣∣≥
∣∣∣∣
{
P(ℓ̄i)
i ∩ B(Yi∗,2c1)

}
∪
{
P(ℓ̄i)
i ∩

{
∪h∈[i−1]B(θh, c1)

}}∣∣∣∣

(a)

≥ m1 +
∑

h∈[i−1]

∣∣∣∣P
(ℓ̄i)
i ∩ {Yj : j ∈ T ∗

h} ∩ B(θh, c1)
∣∣∣∣

(b)

≥ m1 − nβ2 +
∑

h∈[i−1]

∣∣∣∣P
(ℓ̄i)
i ∩ {Yj : j ∈ T ∗

h}
∣∣∣∣

=m1 − nβ2 +

∣∣∣∣P
(ℓ̄i)
i ∩

[
∪h∈[i−1]{Yj : j ∈ T ∗

h}
]∣∣∣∣

≥m1 − nβ2 +

∣∣∣∣P
(ℓ̄i)
i

∣∣∣∣−
∣∣∣∣P

(ℓ̄i)
i ∩

{
∪kg=i{Yj : j ∈ T ∗

g }
}∣∣∣∣− nout

(c)
=
m1

2
− nβ2 +

∣∣∣∣P
(ℓ̄i)
i

∣∣∣∣− nout
(d)

≥
∣∣∣∣P

(ℓ̄i)
i

∣∣∣∣+
m1

8
.(126)

where (a) follows from the fact that {i ∈ [n] : Yi ∈ B(θj, c1)} , j ∈ [k] are disjoint sets as
ming 6=h∈[k] ‖θg − θh‖ ≥∆, (b) follows from (125), (c) followed from (124) and (d) follows
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from nout ≤ m1

8 . Hence, Yi∗ is at a distance at most 3c1 from one of the centroids. Without
loss of we can the closest centroid to be θi−1.
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