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A characterization of all single-integral, non-kernel
divergence estimators

Soham Jana and Ayanendranath Basu

Abstract—Divergence measures have been used for a long
time for different purposes in information theory and statistics.
In particular, density-based minimum divergence estimation is
a popular tool in the statistical literature. Given the sampled
data and a parametric model, we estimate the model parameter
by choosing the member of the model family that is closest
to the data distribution in terms of the given divergence. In
the absolutely continuous set up, when the distributions from
the model family and the unknown data generating distribution
are assumed to have densities, the application of kernel based
non-parametric smoothing is sometimes unavoidable to get an
estimate of the true data density. The use of kernels (or other non-
parametric smoothing techniques) makes the estimation process
considerably more complex, as now one has to impose necessary
conditions not just on the model but also on the kernel and
its bandwidth. In higher dimensions the efficiency of the kernel
density estimator (KDE) often becomes too low for the minimum
divergence procedure to be practically useful. It can, therefore,
lead to a significant advantage to have a divergence which
allows minimum divergence estimation bypassing the use of
non-parametric smoothing. For the same reason, characterizing
the class of such divergences would be a notable achievement.
In this work, we provide a characterization of the class of
divergences that bypasses the use of non-parametric smoothing
in the construction of divergences, providing a solution to this
very important problem.

Index Terms—Bregman divergence, Characterization, Single-
integral, Non-kernel divergence.

I. INTRODUCTION

THE use of minimum distance (or, more generally, mini-
mum divergence) methods in statistics has a long history.

It is a very natural method, where one matches a suitable
empirical quantity against its model counterpart and optimizes
the degree of this match over the model elements. Pearson’s
chi-square (Pearson, 1900) and the corresponding minimum
chi-square method provides an early example of the matching
of the empirical and model probabilities (or frequencies); thus
the history of minimum distance methods must be traced back
at least that far. In the 1950s, Wolfowitz studied minimum
distance methods as a class; see, e.g., Wolfowitz (1957). Of
particular interest to us is the class of density-based minimum
divergence procedures, of which the maximum likelihood
method and the minimum chi-square method are special cases.
A density-based statistical divergence between two densities is
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a nonnegative measure of discrepancy which equals zero only
when the densities are identically equal. They are distance like
measures, but need not be mathematical metrics.

The approach of minimum divergence methods got a major
boost in the 1960s, with the development of the Csiszár class
of divergences (Csiszár 1963, 1967; Ali and Silvey 1966),
although it did take the statisticians a few more decades to
get a general understanding of the scope and full potential
of the procedures resulting from the minimization of these
divergences. These divergences have been called by several
names including φ-divergences, f -divergences and disparities.
Within the field of statistical inference, the topic of robustness
had started to grow roughly around the same time, with
(Huber, 1964) providing the first formalization of the theory of
robustness. Along this line of research came Beran’s seminal
paper on Hellinger distance (Beran, 1977), providing the
first formal link between minimum distance methods and the
corresponding robustness advantages. Beran’s paper actually
does more in that it establishes the asymptotic efficiency of
the minimum Hellinger distance estimator and demonstrates,
possibly for the first time, that asymptotic efficiency and
robustness need not be in conflict.

Beran’s work opened up a new line of research and was
followed up by, among others, Tamura and Boos (1986),
Donoho and Liu (1988), and Simpson (1987, 1989). During
the 1980s and 1990s much effort was also spent in trying
to extend the scope of robust minimum divergence inference
beyond the Hellinger distance. Significant contributions during
this period came from Cressie and Read (1984) and Lindsay
(1994). Although the celebrated Cressie-Read family of diver-
gences were primarily applied by the authors in the context of
goodness-of-fit testing, the huge potential of these divergences
in robust (and efficient) minimum divergence inference was
also immediately appreciated by the research community.
Lindsay, on the other hand, described the entire geometry
behind the method of inference based on disparities (φ-
divergences), and explained which characteristics made these
methods robust even when the influence function approach
failed to capture their robustness. He developed several other
robustness measures which helped to provide a complete
framework for minimum disparity inference. Construction of
local divergences and local hypothesis testing has been taken
up by Avlogiaris et al. (2016 a,b) in this connection. At
least four books (Liese and Vajda 1987; Vajda 1989; Pardo
2006; Basu, Shioya, and Park 2011) cover different aspects of
statistical inference based on φ-divergences or disparities.

In spite of the successful application of the minimum
divergence procedures based on disparities in many domains,
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there is one major hindrance in the application of these meth-
ods under continuous models. The observed data are always
discrete, irrespective of the model. In continuous models,
therefore, it is necessary to construct a continuous estimate of
the data generating density from the observed data before the
disparity can be computed. This requires the use of a suitable
non-parametric smoothing technique such as kernel density
estimation (see, e.g., Devroye and Györfi 1985; Silverman
1986; Scott 1992; Wand and Jones 1994). Density estimation
techniques are also used extensively in model selection (see,
e.g., Lerasle 2012). However, this component often introduces
substantial additional complication in the inference process.
Given two distributions G and F , having densities g and f
with respect to a common dominating measure, the disparity
ρ(G,F ) between these two distributions is defined by

ρ(G,F ) =

∫
C(δ(x))f(x)dx, (1)

where δ(x) = g(x)/f(x)− 1, and C(δ) is a convex function
on [−1,∞) with C(0) = 0. Consider the standard set up of
parametric inference where X1, . . . , Xn is an independently
and identically distributed (i.i.d.) sample from the true distri-
bution G, modeled by the parametric family of distributions
{Fθ : θ ∈ Θ}; let fθ represent the density of Fθ. The minimum
disparity estimator of θ is obtained by choosing the model
element which is closest to the data in the sense of the given
disparity. Since the true density g is unknown in practice, one
needs to minimize the right hand side of the equation (1) over
θ ∈ Θ, where one replaces the density g with a non-parametric
density estimate g∗. In continuous models, the construction
of this density estimate requires the use of non-parametric
smoothing techniques such as kernel density estimation. As
indicated, this makes the method more complicated, both from
a theoretical point of view as well as from the point of
view of implementation. This includes, among other things,
the problem of bandwidth selection and slow convergence of
kernels in higher dimensions. Yet all the methods described
in the two previous paragraphs would inevitably run into this
problem when dealing with continuous models. We consider
two representative disparities, the Kullback-Leibler divergence
and the Hellinger distance, which are frequently used in statis-
tical methodology for different purposes, including minimum
divergence estimation. The forms of these two divergences are
given by

ρKL(G,F ) =

∫
g(x) log

(
g(x)

f(x)

)
dx,

ρHD(G,F ) =

∫ (
g1/2(x)− f1/2(x)

)2
dx.

When G represents the true distribution and F = Fθ represents
the model distribution, the Kullback-Leibler divergence may

be represented as

ρKL(G,Fθ) =

∫
g(x) log

(
g(x)

fθ(x)

)
dx (2)

=

∫
g(x) log(g(x))dx−

∫
g(x) log(fθ(x))dx

= M −
∫
g(x) log(fθ(x))dx

= M −
∫

log(fθ(x))dG(x).

Note that the quantity M in the above equation is independent
of θ. When G is replaced, based on an i.i.d. sample of size
n, by the empirical cumulative distribution function, say Ĝ,
the quantity to be minimized becomes −n−1

∑
log fθ(Xi);

minimizing this is equivalent to maximizing the log like-
lihood, which generates the maximum likelihood estimator.
Thus one can get by here by using the empirical distribution
function and not requiring the kernel density estimator or
a similar construct. Notice that here we have replaced the
theoretical expectation

∫
log(fθ(x))dG(x) by its empirical

estimate n−1
∑

log fθ(Xi), the corresponding sample mean.
However, minimizing the Hellinger distance is equivalent to
maximizing

∫
g1/2(x)f

1/2
θ (x)dx, and given the data from

the unknown distribution G, this maximization can not be
performed without constructing a continuous density estimate,
unlike the Kullback-Leibler divergence. In fact the Kullback-
Leibler divergence is the only divergence within the class of
disparities which allows minimum divergence estimation with-
out the construction of a density estimate (Basu, Shioya, and
Park, 2011).

To motivate this further, we also consider the class of
density power divergences (Basu et al., 1998), where the
divergences have the form

dα(G,Fθ) =

∫
f1+αθ (x)dx −

(
1 + 1

α

) ∫
g(x)fαθ (x)dx

+ 1
α

∫
g1+α(x)dx. (3)

Here α (taking values in [0, 1]) is the tuning parameter of this
family of divergences. Since the last term on the right hand
side of the above equation is independent of θ, the minimiza-
tion of the above divergence, based on an i.i.d. random sample
X1, . . . , Xn of size n, can be achieved by the minimization
of
∫
f1+αθ (x)dx −

(
1 + 1

α

)
n−1

∑n
i=1 f

α
θ (Xi) over θ in Θ.

Here also we have replaced the theoretical expectation by the
sample mean in the objective function to be minimized. Thus,
while the minimization of any disparity (except the Kullback-
Leibler divergence) requires a continuous density estimate,
the minimization of the density power divergence can be
undertaken without any continuous density estimate for any α
in [0,1]. The density power divergence and similar techniques
have been used heavily in the literature. In particular it has
been used extensively in model selection (e.g., Mattheou et
al. 2009). Mattheou and Karagrigoriou (2010) have also used
it for tests of fit.

The necessity of a non-parametrically smoothed density
estimate is a major issue in density-based minimum divergence
estimation. The properties of the resulting estimator depend
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quite heavily on the properties of the kernel density estimator
(KDE), both in respect of its efficiency and robustness. For
example, the rate of convergence of the KDE has a direct
impact on the convergence of the estimator, and slow con-
vergence of the KDE, particularly in multivariate settings,
is a definite problem; see, for example, Tamura and Boos
(1986). On the other hand, the robustness of the estimator
has a direct relation to the bandwidth selection problem. Very
large bandwidths lead to overly smooth KDEs, leading to a
loss in robustness. Very small bandwidths make the KDE
spiky and relatively unsmooth, and the iterative algorithms
for solving the estimating equations run into issues of slow
and unstable convergence. Thus the divergences which are
necessarily dependent on the KDE approach have to overcome
all these difficulties to be successfully applied. Because of
all these reasons, suitable non-kernel minimum divergence
estimators provide alternatives which allow very substantial
simplification on the method based on disparities and other
KDE based divergences. Characterizing such non-kernel di-
vergences is, therefore, an exercise which is of tremendous
practical importance. In the present paper we have provided
a solution to this very important problem and provide a
neat and useful characterization of non-kernel, single-integral
divergences.

II. GENERAL FORM OF NON-KERNEL DIVERGENCE
MEASURES

In practice, to do minimum divergence inference, one has
to get an empirical estimate of the divergence based on the
sampled data which can then be optimized over the parameter
space. In general there are two ways for constructing such an
empirical estimate of the theoretical divergence.

1) In the first, one directly replaces the unknown data gen-
erating density by a suitable non-parametric density es-
timate. Under appropriate assumptions on the bandwidth
sequence, the corresponding density estimator converges
to the true density g; depending on the divergence, the
empirical divergence estimator becomes consistent for
the theoretical divergence.

2) The method described in the previous item has the
drawback that in this case the bandwidth selection
problem and other related convergence issues have to be
tackled as an inevitable part of kernel density estimation
(or other similar non-parametric smoothing techniques).
This can be avoided when the empirical divergence can
be represented as an i.i.d. average over the observed
data points that converges to the theoretical divergence
by the weak law of large numbers. Suppose G and F
are two univariate distributions having densities g and f
and we want to estimate the divergence between them.
Typically a density based divergence will involve the
following terms; (a) an integral term (or a function of
an integral term) involving both the densities g and
f ; (b) an integral term (or a function of an integral
term) involving only the density g; (c) an integral term
(or a function of an integral term) involving only the
density f . Henceforth we define the integral of the

divergence on the common support of the two involved
distributions, G and F . Now suppose we have i.i.d. data
X1, . . . , Xn from the distribution G; let Ĝ represent
the empirical distribution and let G be modeled by an
absolutely continuous parametric family of distributions
{Fθ : θ ∈ Θ}. When constructing a divergence between
G and Fθ, the term of the type (a) will, in general
be of the form

∫
A(g(x), fθ(x))dx. When the relation

A(s, t) = N(t)s holds for some suitable univariate
function N(·), we have∫

A(g(x), fθ(x))dx =

∫
N(fθ(x))g(x)dx

=

∫
N(fθ(x))dG(x)

and we can estimate the divergence between G and
Fθ by using the empirical distribution Ĝ in place of
G to get

∫
N(fθ(x))dĜ(x) = 1

n

∑n
i=1N(fθ(Xi)),

and we do not need to estimate the density g
separately. Divergence measures where the structure
A(s, t) = N(t)s holds and the corresponding empirical
divergence may be constituted without taking recourse
to non-parametric smoothing will be referred to herein
as non-kernel divergence measures. Broniatowski
et al. (2012) have referred to such divergences as
‘decomposable’. Minimum divergence estimators
obtained by minimizing decomposable divergences will
be called non-kernel divergence estimators.

Remark 1. A relevant associated question is whether there
could be other empirical formulations of the theoretical di-
vergence where the structure is not of the A(s, t) = N(t)s
type, but the empirical version can be constructed without
resorting to kernel density estimation (or a similar non-
parametric construct). As of now, no such technique is known
to us, and there does not seem to be any obvious way to
do it, since for any structure other than A(s, t) = N(t)s,
the sample mean representation of the empirical divergence,
which converges to the theoretical divergence by the weak law
of large numbers, is not possible. It is left to future research
to more comprehensively explore other possible non-kernel
representations, but as of now, our non-kernel decomposable
divergences are defined by the structure A(s, t) = N(t)s.

The structure defined above takes us to the following general
form of non-kernel divergence measure between G and F with
corresponding densities g and f including terms of the type
given in (a), (b) and (c) above as

D(G,F ) =

∫ [
B1(g(x))−B2(f(x))−(g(x)−f(x))B3(f(x))

]
dx,

(4)
for some suitably chosen functions B1, B2, and B3. When
F = Fθ, an element of our parametric family, we need to
minimize the above divergence with respect to θ to estimate
the parameter θ of interest. The term

∫
B1(g(x)) has no

contribution in the minimization procedure and we can exclude
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this term from consideration. The reduced problem requires
the minimization of∫ [

−B2(fθ(x))− (g(x)− fθ(x))B3(fθ(x))
]
dx.

Now, by replacing G by Ĝ we get the empirical measure

− 1

n

n∑
i=1

B3(fθ(Xi)) +

∫ [
−B2(fθ(x)) + fθ(x)B3(fθ(x))

]
dx

(5)

which can be minimized with respect to θ without any non-
parametric smoothing. Note that the Kullback-Leibler diver-
gence considered in equation (2) is decomposable in the
sense described in this section, with A(s, t) = N(t)s, where
N(t) = log(t).

Remark 2. Although the construction of the above empirical
measure does not require any non-parametric smoothing, im-
plementation of the minimization method may involve other
difficulties. Calculating the integral in equation (5) may not
always be easy due to the possibly complex natures of the
functions B2, B3, and the model family Fθ. Even though
the integral

∫
fθ(x)B3(fθ(x)) dx can be approximated, using

the Monte-Carlo idea, by 1
m

∑m
j=1B3(fθ(Yj)) where Y ′j s

represent an i.i.d sample from the distribution which has
density fθ(x), the integral involving B2 might have to be ap-
proached differently. For example using importance sampling
(see, eg., Smith, 1997) one can approximate

∫
B2(fθ(x)) dx

by 1
m

∑m
j=1B2(fθ(Yj))/fθ(Yj) where Yj’s are generated as

before. It should be noted that approximating the integrals
by different sampling procedures might slow down the con-
vergence of the estimates to the truth, but that seems also
inevitable under the circumstances. In short, the evaluation of
the quantity in equation (5) may require involved computation
depending on the nature of the functions involved. We hope
to take up this problem in our future work.

Remark 3. In constructing the divergence D(G,F ), we have
assumed that the components of (a), (b) and (c) are additive
and therefore can be expressed as a single-integral. The density
power divergence introduced in equation (3) is a ready exam-
ple. So are all the members of the class of the disparities. We
will refer to such divergences as single-integral divergences.
However there may be legitimate non-kernel divergence mea-
sures which are not single-integral divergences. An example
of this is provided by the class of logarithmic density power
divergence (LDPD) measures (Jones et al., 2001). The LDPD
between distributions G and Fθ with densities g and fθ is
given by

Q(G,Fθ) = log

(∫
f1+βθ (x)dx

)
−
(

1 +
1

β

)
log

(∫
g(x)fβθ (x)dx

)
+

1

β
log

(∫
g1+β(x)dx

)
,

where β is a suitably chosen tuning constant. This is clearly
not a single integral divergence, nor the logarithm of one.

We will refer to all minimum divergence estimators obtained
by minimizing single-integral, non-kernel divergence measures
as “single-integral, non-kernel divergence estimators”.

III. BREGMAN DIVERGENCE

A prominent class of non-kernel divergence measures used
to summarize the statistical discrepancy between two distribu-
tions is the class of “Bregman Divergences”. See, e.g., Stum-
mer and Vajda (2012). Suppose G and F are two distributions
having corresponding densities g and f . Then the Bregman
divergence between these distributions is expressed as

DB(G,F )

=

∫ [
B(g(x))−B(f(x))− (g(x)− f(x))B′(f(x))

]
dx

(6)

where B is some suitable smooth convex function and B′

represents the derivative of B with respect to its argument.
It is easy to check that it possesses all the properties of
a valid statistical divergence. In the next section we will
systematically demonstrate that the form of divergence pre-
sented in (4) reduces to that of the Bregman divergence under
some very general assumptions including the convexity of
B1 and very elementary smoothness properties of B1, B2, B3.
This provides a characterization of single-integral non-kernel
divergences and shows that under very general conditions, all
such divergences must be Bregman divergences.

Remark 4. Continuing the above argument, one can con-
struct examples of known divergences that can be written as
Bregman divergences. A few of them are provided in Table I.
The L2 distance is a very common loss function that is used
for density estimation under different circumstances and do
not need further explanation. The DPD or the BHHJ family
of divergences, first introduced in (Basu et al., 1998), is a
well known distance function that is used under the density
power divergence set up (Basu, Shioya, and Park, 2011). The
parameter estimates based on BHHJ family exihibit asymptotic
normality as well as robustness under basic assumptions on
the model family, as demonstrated in Basu, Shioya, and Park
(2011). The limiting divergence for the BHHJ family as α
reaches 0 is actually the Kullback-Leibler, which is a funda-
mental distance measure in the literature of information theory.
The Itakura-Saito divergence (Itakura and Saito, 1968) is used
in the literature for non-negative matrix factorization (Févotte
et al., 2009). The Bregman exponential divergence gives
another instance of a simple Bregman divergence generated
by a common convex function (Mukherjee et al., 2018).

The Bregman divergence is one of the most studied fam-
ilies of divergence measures. Apart from the usual benefits
the divergences possess due to convexity of the underlying
B function, which is helpful in the context of the various
optimization problems, they also have links to the exponential
family of distributions. Given any member of the regular
exponential family one can write the density uniquely in
terms of exponential of a Bregman divergence with a properly
chosen B function, as mentioned in Banerjee et al. (2005,
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TABLE I
BREGMAN DIVERGENCES WITH DIFFERENT B FUNCTIONS

Divergence DB(G,Fθ) B(x)

Kullback-Leibler
∫
g(x) log

g(x)

fθ(x)
dx x log(x)

L2 distance
∫

(g(x)− fθ(x))
2 dx x2

DPD/ BHHJ Family
∫ {

f1+αθ (x)− (1 +
1

α
)g(x)fα(x) +

1

α
g1+α(x)

}
dx

x(1+α)

α
(Generalization of L2) α > 0

Itakura-Saito distance
1

2π

∫ π

−π

{
g(x)

fθ(x)
− log

g(x)

fθ(x)
+ 1

}
dx −

log(x)

2π

Bregman Exponential Divergence 2
α

∫ {
eαf(x)

(
f(x)−

1

α

)
− eαf(x)g(x) +

1

α
eαg(x)

}
dx

2(eαx − αx− 1)

α2

Theorem 4). Other then that, in case of discrete state spaces the
Bregman divergence based on the empirical mass function is
asymptotically distributed as χ2 with suitably chosen degrees
of freedom under general regularity conditions (Pardo and
Vajda, 2001), which is often utilized in hypothesis testing.
Bregman divergences also generalize the Pythagorean identity
in functional spaces, which provides better understanding of
the underlying mathematical structure (Frigyik et al., 2008).

IV. RESULTS

Here we prove the claim about how the divergence presented
in (4) can be reduced to some element in the class of Bregman
divergences. We start with a subclass of the divergences
presented in (4), which relates to the case where the integrand
of the general form is nonnegative. In the following theorem
we show that the aforementioned nonnegativity forces the
integral to be a member of the class of Bregman divergence.

Theorem 1. Suppose that the quantity D(G,F ) defined in
(4) is a valid statistical divergence, B1(·) is continuously
differentiable and B3(·) is continuous in their respective
arguments. Then if the integrand in the expression of D(G,F )
in equation (4) is nonnegative for all absolutely continuous
distributions G and F , then B1(·) is identically equal to B2(·)
and B3(·) is identically equal to B′1(·), where B′1(·) is the
derivative of B1(·).

Proof. We first show that B1(x) = B2(x) for all x in R+.
As the functions B1(·), B2(·) and B3(·) will be applied to
densities, we can assume their domains to be R+. Under the
assumption that D(G,F ) is a valid divergence between any
two absolutely continuous distributions G and F , we have
D(G,F ) = 0 if and only if G is identically equal to F . Given

any x > 0, consider the distribution H with density h given
by

h(y) =

x, y ∈
(

0,
1

x

)
0, otherwise.

(7)

Now take G = F = H . Then D(G,F ) = 0 implies∫ 1/x

0

[B1(g(y))−B2(f(y))]dy =
B1(x)−B2(x)

x
= 0, (8)

which implies that

B1(x) = B2(x).

As x is arbitrary, we get B1(x) = B2(x) for all x in R+.
Henceforth we replace B2 by B1 in the expansion of the

divergence in (4). To prove the remaining part, again fix x >
0, arbitrarily. Now consider the sequence of distributions Gn
given by the corresponding sequence of densities

gn(y) =


x− 1

n
, y ∈

(
0,

1

2x

)
x+

1

n
, y ∈

(
1

2x
,

1

x

)
.

Take F to be identically equal to H as defined in (7). As the
integrand of D(Gn, F ) is always nonnegative by assumption,

we get for y ∈
(

1

2x
,

1

x

)
,

B1(gn(y))−B1(f(y))− (gn(y)− f(y))B3(f(y))

= B1

(
x+

1

n

)
−B1(x)− 1

n
B3(x) ≥ 0 (9)

for all n. But this implies

B1(x+ 1/n)−B1 (x)

1/n
≥ B3 (x) , (10)
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for all n. Taking limit as n goes to infinity, continuity of B′1(·)
gives us

B′1(x) ≥ B3(x). (11)

Now we interchange the role of F and Gn. As the integrand
of D(F,Gn) is always nonnegative by assumption, we get for

z ∈
(

1

2x
,

1

x

)
,

B1(f(z))−B1(gn(z))− (f(z)− gn(z))B3(gn(z))

= B1(x)−B1

(
x+

1

n

)
+

1

n
B3

(
x+

1

n

)
≥ 0

for all n. This implies

B1(x)−B1 (x+ 1/n)

−1/n
≤ B3

(
x+

1

n

)
,

for all n. Taking limit as n goes to infinity, the above equation
yields

B′1(x) ≤ B3(x), (12)

by continuity of both B′1(·) and B3(·) in their arguments.
Combining equations (11) and (12) we get B′1(x) = B3(x).
But as x > 0 is arbitrary, we get B′1(·) is identically equal to
B3(·). This concludes the proof.

The result proved in Theorem 1, useful as it is, is still
of limited interest. It does not rule out the possibility of
the existence of a valid single integral divergence with the
integrand being negative on a positive measure set; con-
sider the Kullback-Leibler divergence given by ρKL(G,F ) =∫
g(x) log(g(x)/f(x))dx, between distributions G and F with

densities g and f , as an example. One should therefore, find
out the properties of B1, B2, B3 that are required to cover
the case where the only constraint is the non-negativity of
the whole integral and its equality to zero if and only if
G = F , without requiring the non-negativity of the integrand
itself. These are, in fact the only conditions needed to make
D(G,F ) a valid divergence. However it is remarkable that
only additional necessity for this purpose is the strict convexity
of the function B1. This gives rise to the following theorem.

Theorem 2. If the function D(G,F ) defined in (4) is a valid
divergence between any two absolutely continuous distribu-
tions G and F and B1 is strictly convex and differentiable on
the positive real line, then B2(x) = B1(x) as in Theorem
1 and we have B3(x) = d

dxB1(x) for all x in R+ up
to an additive constant independent of x. Hence D(G,F )
is identical to the DB(G,F ) divergence generated by the
function B1.

Proof. The proof of B1(·) ≡ B2(·) follows exactly as in
Theorem 4.1 so we do not repeat it. Henceforth we take

B1(x) = B2(x) = B(x) for all x in R+. The divergence
can then be rewritten as

D(G,F )

=

∫ [
(g(x)− f(x))

{
B(g(x))−B(f(x))

g(x)− f(x)
−B′(f(x))

}]
dx

+

∫
[(g(x)− f(x))(B′(f(x))−B3(f(x)))]dx

=

∫ [
(g(x)− f(x))

{
B(g(x))−B(f(x))

g(x)− f(x)
−B′(f(x))

}]
dx

+

∫
[(g(x)− f(x))M(f(x))]dx

where M := B′ − B3. If M(·) is constant function then we
are done. If not, then there exists two points x1, x2 in R+ such
that M(x1) > M(x2). Now, consider the distribution F with
density f given by

f(y) =


x1, y ∈

(
0,

1

x1 + x2

)
x2, y ∈

(
1

x1 + x2
,

2

x1 + x2

)
.

Also consider the sequence of distributions Gn given by the
corresponding sequence of densities gn defined as

gn(y) =


x1 −

1

n
, y ∈

(
0,

1

x1 + x2

)
x2 +

1

n
, y ∈

(
1

x1 + x2
,

2

x1 + x2

)
.

Note that gn(·) is a valid probability density function for all
n > 1

x1
. From the definition of gn, it follows that

n(x1 + x2)D(Gn, F )

=

{
−B(x1 − 1/n)−B(x1)

−1/n
+B′(x1)−M(x1)

}
+

{
B(x2 + 1/n)−B(x2)

1/n
−B′(x2) +M(x2)

}
.

Now, for each x in R+,

B(x− 1/n)−B(x)

−1/n
−B′(x)→ 0

and
B(x+ 1/n)−B(x)

1/n
−B′(x)→ 0

as n goes to infinity. Hence there exists n1 > 1
x1

such that

− B(x1 − 1/n1)−B(x1)

−1/n1
+B′(x1)

+
B(x2 + 1/n1)−B(x2)

1/n1
−B′(x2) < M(x1)−M(x2),

(13)

as M(x1)−M(x2) is a strictly positive quantity. This implies
D(Gn1

, F ) < 0, a contradiction as by our assumption,
D(G,F ) is a statistical divergence for all distributions G and
F . This concludes the proof of the theorem.

One point that should be mentioned here is that the strict
convexity of B1 is never used here for the proof itself, but

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIT.2019.2937527

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



7

it is required for DB(G,F ), and hence D(G,F ), to be valid
divergences. In that context, we present our final result.

Theorem 3. DB(G,F ) based on the function B (which we as-
sume here to be at least first order continuously differentiable)
is a valid statistical divergence for all absolutely continuous
distributions F and G if and only if B is a strictly convex
function.

Proof. First we present the proof of the ‘if’ part. This is the
easier part of the theorem. One can check that by convexity
of B(·) in its argument, the integrand of DB(·, ·) is always
nonnegative and equal to zero only when f(·) is identically
equal to g(·) outside a set of measure zero under the model.
Hence DB(G,F ) is a valid statistical divergence for all
absolutely continuous distributions G and F .

Before proving the only if part, it should be pointed out that
there exists related results on non-negativity of Bregman diver-
gence between two points; see, e.g., Boyd and Vandenberghe
(2004). In the result proved below, we only assume non-
negativity of the concerned integral (this allows the integrand
to be negative in some cases as well), providing much more
generality in that context.

Now we begin proving the ‘only if’ part. We proceed via
contradiction. Suppose that B′(·) is not strictly increasing on
some open intervals in R+. Then by continuity there exists an
interval such that B′(·) is constant in that interval or strictly
decreasing in that interval. We treat the two cases separately.

First we consider the constant case. Suppose that there exists
x > 0 and r > 0 such that B′(y) is constant for all y in
V = (x−r, x+r), with x−r > 0. Take x1, x2, r1, r2 such that
V1 = (x1−r1, x1 +r1) ⊂ V and V2 = (x2−r2, x2 +r2) ⊂ V
with V1 ∩ V2 = Φ. Based on this notation we construct f(·)
and g(·) same as before. Then we have

n(x1 + x2)DB(Gn, F )

=

{
−B(x1 − 1/n)−B(x1)

−1/n
+B′(x1)

}
+

{
B(x2 + 1/n)−B(x2)

1/n
−B′(x2)

}
. (14)

Take n0 > max( 1
r1
, 1
r2

). Then DB(Gn0
, F ) = 0 in spite

of Gn0
and F being two different distributions. This is a

contradiction as a valid statistical divergence between two
distributions is zero if and only if they are unequal on a
measure zero set.

On the contrary let us assume that there exists an interval
such that B′(·) is strictly decreasing in that interval. Under
the previous notations, assume that B′(·) is strictly decreasing
in V . By Lagrange’s Mean Value Theorem, there exists ξ1, ξ2
such that

B(x1 − 1/n0)−B(x1)

−1/n0
= B′(ξ1), x1 −

1

n0
< ξ1 < x1

and

B(x2 + 1/n0)−B(x2)

1/n0
= B′(ξ2), x2 < ξ2 < x2 +

1

n0
.

By our assumption of strictly decreasing B′(·) in V we have
B′(ξ1) > B′(x1) and B′(ξ2) < B′(x2). Hence we get

n0(x1 + x2)DB(Gn0
, F )

=

{
−B(x1 − 1/n0)−B(x1)

−1/n0
+B′(x1)

}
+

{
B(x2 + 1/n0)−B(x2)

1/n0
−B′(x2)

}
= {−B′(ξ1) +B′(x1)}+ {B′(ξ2)−B′(x2)}
< 0.

This provides the necessary contradiction. Hence on all open
intervals in R+, B′(·) is strictly increasing and hence B(·) is
a convex function in its argument.

Combining Theorem 2 and Theorem 3 we conclude that
all single integral, non-kernel divergence measures for ab-
solutely continuous models belong to the class of Bregman
divergences. Since every Bregman divergence is a single-
integral, non-kernel divergence measure, this indicates that
all single-integral minimum divergence estimators that can be
computed without any non-parametric smoothing under abso-
lutely continuous models are minimum Bregman divergence
estimators, and the reverse relation also holds. This provides
a characterization of all single-integral, non-kernel divergence
estimators under absolutely continuous models. We conclude
the paper with the following remarks.

Remark 5. As the paper demonstrates, all single-integral,
non-kernel divergences are Bregman divergences with possibly
strictly convex B functions. The objective function therefore
turns out to be an i.i.d. average over the observed data
points and the corresponding minimum divergence estimator
turns out to be an M-estimator. Thus the well established
theory and the asymptotic and convergence results about M-
estimators automatically apply to these non-kernel minimum
divergence estimators. Yet these estimators are not in the
classical spirit of M-estimators where the primary ψ functions
are of the location-scale type. Since here the model densities
are the arguments of the convex generating function B, these
estimators make explicit use of the form of the model density
in the structure of its ψ function. More research is necessary
in the future to get a better idea about the impact of the nature
of the B function on the corresponding inference; the known
properties of the minimum divergence estimators based on the
density power divergence make such explorations eminently
sensible.

Remark 6. The use of non parametric methods in order
to smooth the data and find a density estimate has a rich
literature, but often runs into issues related to convergence.
Other than an assumption of a large enough sample size,
one has to be really concerned about the rate in which
the associated bandwidth decreases to zero and a choice of
the kernel. These factors are important for the theoretical
justification of convergence to the truth. In the multivariate set
up, inefficiency of the kernel density estimate increases sharply
with dimension (Silverman, 1986), which results in unreliabil-
ity of the inference in dealling with small datasets. Even with
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a large volume of data, use of common multivariate kernels
introduces a bias in the density estimate, which necessitates
the consideration of kernels with complex moment conditions
(Lu et al., 2009), often making asymptotic consistency of the
estimator difficult to verify. In addition, the proper choice of
the bandwidth relative to the sample size is also important
for the robustness of the estimator and the computational
complexity of the procedure. In repeated simulations it is the
experience of the authors that a relatively large bandwidth
can make the kernel density estimate overly smooth and
push the solution towards the non-robust maximum likelihood
estimator. On the other hand, a very small bandwidth will
make the kernel density estimate extremely spiky, leading to
slower (often, significantly slower) convergence of the iterative
root solving procedure.

Remark 7. The characterization provided in this paper asserts
that one needs to focus exclusively on Bregman divergences
to avoid the usual drawbacks of non-parametric smoothing
in minimum divergence inference. For illustration, consider
θ0 ∈ Θ such that Fθ0 ∈ {Fθ : θ ∈ Θ} is closest to the
data generating distribution G in the Bregman divergence
sense. Under the notation vθ(Xi) = −B′(fθ(Xi)) +

∫ [
−

B(fθ(x)) + fθ(x)B′(fθ(x))
]
dx and the results in our paper,

the minimization of the expression in (5) translates to the
problem of minimizing

1

n

n∑
i=1

vθ(Xi)

over θ ∈ Θ. Then we can invoke Theorem 2 and Theorem 4
from Yuan and Jennrich (1998) to show that with probability
one there exists roots θ̂n of the estimating equation

1

n

n∑
i=1

d

dθ
vθ(Xi) = 0

such that

θ̂n→θ0.

Furthermore this sequence of roots also exhibits
√
n(θ̂n − θ0)

L→ N(0,W )

where the last convergence is in distribution for some positive
definite matrix W , depending possibly on θ0. The quantity
(θ̂n − θ0) is therefore a Op(n

−1/2) term. It may be noted
that the assumptions that need to be verified for the above
convergence are standard, and in terms of the defining B
function only some smoothness conditions on the derivatives
of the B function, of order at most 3, are needed. On the other
hand the convergence rates of kernel based estimators involve
extra dependency on bandwidths of the smoothing method in
addition to similar conditions on B1, B2, and B3. See Tamura
and Boos (1986) for a description of the bias term generated
in estimation due to the slow convergence of the kernel.

Remark 8. The consistency of the estimators generated in
the process depends only on the B function and proper
choice of it gives rise to important statistical results (e.g.,
in case of Kullback-Leibler, L2, BHHJ, etc.). Moreover the

characterization also implies that given any model family of
densities, one only needs to focus on the estimators based on
the Bregman divergences to get a good understanding of the
underlying parameters. The structure of divergence involved
here can also be analyzed in the regime of convex optimization
which possesses well behaved ways of dealing with such
expressions. One should mention that there are examples of
divergences that can be constructed with the help of convex
functions (for example the class of disparities considered in
Basu, Shioya, and Park 2011) but the class considered here
enjoys the additional benefit of simplicity of the divergence
which makes it easier to analyze the properties of the estima-
tor. This opens up consideration of optimization problems of
similar type that might be of statistical significance. However,
we do not discuss this in any more detail as that is not the
focus of this paper.
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