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Bernoulli sampling model [Bunge and Fitzpatrick, 1993]

θ1 Balls of color 1
θ2 Balls of color 2

. . .
θk Balls of color k

Setup: Population of k balls, each belonging to one of
k types (color).
Want to estimate: Profile of the urn [Orlitsky et al.,
2005]:

π =
1
k

k∑
j=1

δθj

in total variation distance. Note that πj gives us the
proportion of color with exactly j balls.
Data: Xj balls of color j, distributed as Binom(θj , p). p
might be vanishing, i.e. p k→∞−→ 0.

Note that the empirical distribution of color contains
more information, but requires more samples to learn.
In particular, it cannot be estimated consistently in the
sub-linear regime.
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Example
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Urn of size 17. The distribution of color is
5 blue balls
4 gray balls
2 orange balls
3 red balls
3 green balls.

Then the empirical distribution of colors (µ) is
given by

µ(blue) =
5

17
, µ(gray) =

4
17
, µ(orange) =

2
17
,

µ(red) =
3

17
, µ(green) =

3
17
.
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The profile (π) depends on the color-deleted
version of the urn.

π is supported on {0, 1, . . . , 17} and is given by

πm =


1− 5

17 if m = 0
1

17 if m = 2, 4, 5
2

17 if m = 3
0 otherwise.

π0 gives us total number of distinct colors (C)

π0 = 1−
C
k
.
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Usefulness
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Usefulness of profile

[Orlitsky et al., 2005] Important label invariant properties (e.g. entropy, number of
distinct species) are learnable through π.

Consider small sample regime (sample size vanishing fraction of k)
Consistent estimation of µ is impossible.
Consistent estimation of π is possible.
Useful implication towards estimating label invariant properties from small sample.

The problem of estimating π is part of the program of ”empirical Bayes” [Robbins,
1951, Robbins, 1956].

Want to estimate functional f of ~θ = (θ1, . . . , θj ).

The goal is to compete with the oracle estimator f̂ (~X , π) which one can compute
when the true π is known.
When π is unknown we get estimator π̂ of π and then substitute to get f̂ (~X , π̂).

Question : How well the estimation of π can be done?
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Existing
literature
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Distinct elements problem
Find estimator π̂0 such that

max
k ball urn

E|π̂0 − π0|
k→∞−−−−→ 0.

[Bunge and Fitzpatrick, 1993, Charikar et al., 2000, Raskhodnikova et al.,
2009, Valiant and Valiant, 2011, Wu and Yang, 2018, ...]
[Wu and Yang, 2018] If 1

log k . p . 1 the optimal rate of estimating π0 is k−Θ(p).

[Valiant, 2012, Wu and Yang, 2018] Consistent estimation is not possible if
p = O

(
1

log k

)
.

Estimation of πm, m ≥ 1
Our results refines the above for other atoms of π. We show that the polynomial
rate k−Θ(p) holds for all πm with m = o(log k).

For m = Θ (log k) estimation is much harder, with rate Ωp
(

1
(log k)2

)
.
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Want to evaluate (for possibly vanishing p)

R(k) = inf supE [‖π − π̂‖TV] .

Sorted version of µ (µ↓) and π are related

‖π1 − π2‖TV ≤ ‖µ1↓ − µ2↓‖TV.

[Orlitsky et al., 2005, Valiant and Valiant, 2013, Han et al., 2018] studied
estimation of µ↓ for general population (might not be finite). There exists µ̂↓
based on sample of size Θ(k) such that

E
[
‖µ↓ − µ̂↓‖TV

]
≤ O

(
1

√
log k

)
.

This implies existence of π̂ such that E [‖π − π̂‖TV] ≤ O
(

1√
log k

)
.

For finite population this upper bound is loose by a square root factor in view of
our main result.
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Results
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Main theorem

For all k ≥ d0
p̄ , where d0 is some absolute constant, the following holds.

1 There exists absolute constant C such that

R(k) ≤ min
{

C
p log k

, 1
}
.

The upper bound is achieved by minimum-distance estimator computable in
polynomial time.

2 There exists absolute constant c such that

R(k) ≥ min
{

p̄
p
,
√

log k
}

c
log k

where p̄ = 1− p.

This shows that in linear regime (i.e. constant p) the optimal TV rate is
Θ
(

1
log k

)
.

Consistent estimation is possible in vanishing regime p = ω
(

1
log k

)
.
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Connection to minimum distance estimator

General set up:
Parameter space Θ.
Distribution family {Pθ : θ ∈ Θ} with distance measure ρ.
π = 1

k
∑k

i=1 δθj .
Want to analyze

R(k) = inf
π̂

sup
θ1,...,θk

E [d(π̂, π)]

under some cost constraint 1
k
∑k

j=1 c(θj ) ≤ 1.

Data: Xj ∼ Pθj independently for j = 1, . . . , k.

Empirical estimate ν̂ = 1
k
∑k

j=1 δXj satisfies

E [ν̂] = πP.

This motivates estimation of π as

π̂ = argmin
π′

{
ρ(ν̂, π′P) : Eπ′ [c(θ)] ≤ 1

}
.
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Connection to linear programming

Suppose additionally we have concentration of ν̂ around πP

P [ρ(πP, ν̂) > tk ] ≤ εk

for some tk , εk → 0. Then we can argue to get results of type

R(k) . δ(2tk )

where δ is the linear program given by

δ(t) = sup
{

d(π, π′) : ρ(πP, π′P) ≤ t,Eπ [c(θ)] ≤ 1,Eπ′ [c(θ)] ≤ 1
}
.

Choice of total variation: Choosing ρ(·, ·) = ‖ · − · ‖TV gives us

δ(1/k) . R(k) . δ(tk ).

When δ(1/k) � δ(tk ) we get the rate.
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Linear programming: BSM and the total variation case

For Bernoulli sampling model the family is given by Markov kernel P

Pim =
( i

m

)
pm(1− p)i−m, i ,m ≥ 0.

Note that profile has mean less than 1. Define linear program

δTV(t) , sup
{
‖π − π′‖TV : ‖πP − π′P‖TV ≤ t;Eπ[θ],Eπ′ [θ] ≤ 1

}
.

δTV(t) is a modulus of continuity type linear program that appears in previous
work of statistical estimation.

Theorem
There exist absolute constants C1,C2, d0 such that for all k ≥ d0

1
72
δTV

(
1

6k

)
−

C2√
k
≤ R(k) ≤ 2δTV

(√
C1 log k

k

)
, (1)

where the upper bound is attained by the minimum distance estimator

π̂ = argmin
π′

{
‖ν̂ − π′P‖TV

}
.
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Linear programming: BSM and the total variation case

For Bernoulli sampling model the family is given by Markov kernel P

Pim =
( i

m

)
pm(1− p)i−m, i ,m ≥ 0.

Note that profile has mean less than 1. Define linear program

δTV(t) , sup
{
‖π − π′‖TV : ‖πP − π′P‖TV ≤ t;Eπ[θ],Eπ′ [θ] ≤ 1

}
.

δTV(t) is a modulus of continuity type linear program that appears in previous
work of statistical estimation.
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Analyzing δTV

Lemma

(1) There exists absolute constant C3 > 0 such that for all p, t we have

δTV(t) ≤ min
{

C3
p log(1/t)

, 1
}
. (2)

(2) There exist absolute constants C4, t0 > 0 such that for any p ∈ (0, 1), t ≤ t0,

δTV(t) ≥ min
{

p̄
p
,
√

log(1/t)
}

C4
log(1/t)

.

In view of previous theorem this gives us the rate.
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Sketch of proof
(δTV(t) bounds)
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To bound δTV(t) we first relate it to another linear program δ∗(t) in terms of
generating functions.
For any g(z) =

∑∞
n=0 anzn define its ‖ · ‖A norm as

‖g‖A =
∞∑

n=0
|an|.

Define the new linear program

δ∗(t) , sup
∆

{ ∞∑
m=0
|∆m| : ‖∆P‖1 ≤ t,

∞∑
m=0

m|∆m| ≤ 1
}
.

= sup
f

{
‖f ‖A : ‖fp‖A ≤ t, ‖f ′‖A ≤ 1

}
where fp(z) = f (p̄ + pz) and the sup is over all analytic functions f .

Lemma

For all t ∈ [0, 1] we have

1
2

(δ∗(t)− t) ≤ δTV(t) ≤ δ∗(t).

We bound δ∗(t) using complex analytic techniques.
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Upper bound on δ∗(t)

Note that the objective function in δ∗(t) can be written as

‖f ‖A =
∞∑

m=0

∣∣f (m)(0)
∣∣

m!
.

The contribution from
∑

m≥log(1/t)
|f (m)(0)|

m! is at most Cp
log(1/t) from the derivative

constraint.
For each other terms we use the LP’s

δm(t) = sup
f

{
|f (m)(0)|

m!
: ‖fp‖A ≤ t, ‖f ′‖A ≤ 1

}

to bound δ∗(t) as

δ∗(t) ≤
log(1/t)∑

m=0
δm(t) +

Cp

log(1/t)
.

We then show that each of δm(t) is negligible by using Hadamard three line
theorem.
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Hadamard’s three line theorem

For any analytic function f define its
‖ · ‖H∞(C) norm over set C

‖f ‖H∞(C) = sup
z∈C
|f (z)|.

Denote by D the unit disc on C and let
Dp = p̄ + pD.
Consider 0 < q < q1 < 1
Then Hadamard’s three line theorem says that

‖f ‖H∞(Dq1 ) ≤ ‖f ‖
1− qq̄1

q̄q1
H∞(D)‖f ‖

qq̄1
q̄q1
H∞(Dq) .

Soham Jana, Yury Polyanskiy, Yihong Wu Extrapolating the profile of a finite population



Hadamard’s three line theorem

For any analytic function f define its
‖ · ‖H∞(C) norm over set C

‖f ‖H∞(C) = sup
z∈C
|f (z)|.

Denote by D the unit disc on C and let
Dp = p̄ + pD.
Consider 0 < q < q1 < 1
Then Hadamard’s three line theorem says that

‖f ‖H∞(Dq1 ) ≤ ‖f ‖
1− qq̄1

q̄q1
H∞(D)‖f ‖

qq̄1
q̄q1
H∞(Dq) .

Soham Jana, Yury Polyanskiy, Yihong Wu Extrapolating the profile of a finite population



Hadamard’s three line theorem

For any analytic function f define its
‖ · ‖H∞(C) norm over set C

‖f ‖H∞(C) = sup
z∈C
|f (z)|.

Denote by D the unit disc on C and let
Dp = p̄ + pD.
Consider 0 < q < q1 < 1
Then Hadamard’s three line theorem says that

‖f ‖H∞(Dq1 ) ≤ ‖f ‖
1− qq̄1

q̄q1
H∞(D)‖f ‖

qq̄1
q̄q1
H∞(Dq) .

Soham Jana, Yury Polyanskiy, Yihong Wu Extrapolating the profile of a finite population



Hadamard’s three line theorem

For any analytic function f define its
‖ · ‖H∞(C) norm over set C

‖f ‖H∞(C) = sup
z∈C
|f (z)|.

Denote by D the unit disc on C and let
Dp = p̄ + pD.
Consider 0 < q < q1 < 1
Then Hadamard’s three line theorem says that

‖f ‖H∞(Dq1 ) ≤ ‖f ‖
1− qq̄1

q̄q1
H∞(D)‖f ‖

qq̄1
q̄q1
H∞(Dq) .

Soham Jana, Yury Polyanskiy, Yihong Wu Extrapolating the profile of a finite population



Upper bounding δm(t) using Hadamard’s theorem

Using ordering between A norm and H∞(D) norm, the constraints on δm(t), and
Cauchy integral formula we get bounds on ‖f ‖H∞(D) and ‖f ‖H∞(Dp).
Cauchy’s integral formula also implies

|f (m)|
m!

≤ 2m‖f ‖H∞(D1/2).

For p < 1
2 < 1 we get Dp ⊂ D1/2 ⊂ D1. So we can bound ‖f ‖H∞(D1/2) in terms

of ‖f ‖H∞(D) and ‖f ‖H∞(Dp) by Hadamard’s theorem.

For p ≥ 1
2 as D1/2 ⊂ Dp we get ‖f ‖H∞(D1/2) ≤ ‖f ‖H∞(Dp) ≤ t.

Adding up all the bounds we get Op
(

1
log(1/t)

)
bound on

∑log(1/t)
m=0 δm(t).
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Lower bound on δ∗(t)

Using ‖ · ‖H∞(D) ≤ ‖ · ‖A we relax the constraints and objective functions of
δ∗(t) to get related linear program

δH∞ (t) = sup
f

{
‖f ‖H∞ (D) : ‖fp‖H∞(D) ≤ t, ‖f ′‖H∞(D) ≤ 1

}
We have δH∞ (t) = Θp

(
1

log(1/t)

)
and is achieved by the function

f (z) =
cp

log(1/t)
(1− z)2t

p
p̄

1+z
1−z .

We modify f (z) by further dilation z → αz to get feasible solution to δ∗(t).
The coefficients of the modified version can be related to the Laguerre
polynomial. The sum of the coefficients gives us the desired logarithmic lower
bound. The proof relies on properties of Laguerre polynomials.
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Summary

The profile of population gives us information about many important label
invariant properties.

In small sample regime of p = ω
(

1
log k

)
we can consistently estimate the profile

in total variation distance..
When p = Θ(1) the optimal rate is Θ

(
1

log k

)
.

The estimator which achieves optimal rate is based of minimum distance type
and can be computed in polynomial time.
We device a single infinite dimensional linear program that characterizes the
estimator and also proves its minimax optimality. We solve the LP using complex
analytic techniques.
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Proof of upper bound: Connection of risk and δTV(t)

ν̂ concentrates around E [ν̂] = πP

E [‖ν̂ − ν‖TV] =
(√

C1 log k
k

)
.

Using McDiarmid’s inequality we get

P [|‖ν̂ − ν‖TV − E [‖ν̂ − ν‖TV]| ≥ ε] ≤ exp
(
C0kε2)

which implies

P

[
‖ν̂ − ν‖TV ≥

√
C1 log k

k

]
≤

1
k
.
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Proof of upper bound: Connection of risk and δTV(t)

Linear program

δTV(t) , sup
{
‖π − π′‖TV : ‖πP − π′P‖TV ≤ t;Eπ[θ],Eπ′ [θ] ≤ 1

}
.

The minimum distance estimator π̂ = argminπ {‖ν̂ − πP‖TV : Eπ [θ] ≤ 1}
satisfies

‖π̂P − πP‖TV ≤ ‖πP − ν̂‖TV + ‖π̂P − ν̂‖TV ≤ 2‖πP − ν̂‖TV.

This implies
E [‖π̂ − π‖TV] ≤ E [δTV (2‖πP − ν̂‖TV)] +

1
k

and hence

R(k) = inf
π̂

sup
π

E [‖π̂ − π‖TV] ≤ E [δTV (2‖πP − ν̂‖TV)] ≤ δTV

(√
C1 log k

k

)
+

1
k
.
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Proof of lower bound: Solution to auxiliary program δH∞(t)

δH∞ (t) = supf
{
‖f ‖H∞ (D) : ‖fp‖H∞(D) ≤ t, ‖f ′‖H∞(D) ≤ 1

}
We use the transform w : z → 1+z

1−z

and re-parameterize f (z) = g (w).

Then we have g ′(w) = 2
(1+w)2 f ′

(
w−1
w+1

)
and using constraints get the bound

‖g ′‖H∞(<=ε) ≤ 2Cpt
min

{
εp
2p̄ ,1

}
, ε ∈

(
0,

p̄
p

)
.
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Proof of lower bound: Solution to auxiliary program δH∞(t)

Using this we integrate the derivatives to get bound∣∣∣∣g(iw)− g
(

iw +
p̄
p

)∣∣∣∣ ≤ Cp

∫ p̄
p

0
t
εp
2p̄ ≤

Cp

log
( 1

t
) .

As ‖g‖H∞(<=p̄/p) ≤ t we get ‖g‖H∞(<=0) = ‖f ‖H∞ (D) ≤ Cp
1

log(1/t) .

As exponential function saturates the Hadamard three line theorem, the guess is
to choose exponential function for lower bound. The choice

f (z) =
cp

log(1/t)
(1− z)2t

p
p̄

1+z
1−z

comes from modifications to satisfy the constraints.
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Solving δ∗(t)

For β > 0, 0 < α < 1 to be chosen later define

h(z) = exp
(
−β

1 + αz
1− αz

)
= exp(−β) exp

(
−2β

αz
1− αz

)
.

We use the Laguerre polynomial relation

h(z) = exp(−β) exp
(
−2β

αz
1− αz

)
= e−β

∞∑
n=0

αnL−1
n (2β).

Denote ∆m = e−βαnL−1
n (2β) and show that for sufficiently large β

|∆m|+ |∆m+1| ≥ α3β/2β−1/2.

We bound ‖h‖A from below by
∑
β≤m≤3β/2 |∆m|.

For the choice β = max
{

4p
p̄ log(1/t),

√
log(1/t)

p

}
and α = 1

β
we get desired

lower bound.
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